Gold Bulletin

, Volume 34, Issue 4, pp 120–128 | Cite as

The role of nanosized gold particles in adsorption and oxidation of carbon monoxide over Au/Fe2O3 Catalyst

  • Narendra M Gupta
  • Arvind K Tripathi
Open Access


The presence of gold is found to promote the development of weakly bonded (CO)ad species over the surface of Au/Fe2O3 catalyst during interaction with carbon monoxide (CO) or a mixture of carbon monoxide and oxygen. The concentration of these species and the nature of the bonding depend on the gold particle size. No such species are formed for gold particles larger than ∼11 nm or over gold-free iron oxide. The bulk carbonate-like species, formed in the process with the involvement of the hydroxy groups of the support, are merely side products not responsible for the low temperature activity of this catalyst.

Thermochemical measurements reveal that the oxidation of carbon monoxide on both Fe2O3 and Au/Fe2O3 occurs via similar redox mechanisms, involving the abstraction and replenishment of lattice oxygen, where the presence of nanosize gold particles promotes these processes. This is attributed to their capacity to adsorb carbon monoxide because of their inherent defective structural sites. It is suggested that the energy that evolves during chemisorption of CO is responsible for the surge in temperature at the Au-Fe2O3 interfaces, which in turn serve as sites for the accelerated reaction between CO and the support. The role of gold particle size is discussed in terms of the effect of geometry of surface metal atoms in the nanosize clusters.


Gold Particle Gold Catalyst Gold Bulletin Catalyst Temperature Gold Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Haruta, T. Kobayashi, H. Sano and N. Yamada,Chem. Lett., 1987, 405Google Scholar
  2. 2.
    M. Haruta, N. Yamada, T. Kobayashi and S. Iijima,J. Catal., 1989,115, 301CrossRefGoogle Scholar
  3. 3.
    S. Tsubota, D.A.H. Cunningham, Y. Bando and M. Haruta, in ‘Preparation of Catalysts VI’, ed. G. Poncelet et al., Elsevier, Amsterdam, 1995, p. 227Google Scholar
  4. 4.
    M. Haruta, S. Tsubota, T. Kobayashi, M. Kageyama, M.J. Genet and B. Delmon,J. Catal., 1993,144, 175CrossRefGoogle Scholar
  5. 5.
    G.C. Bond and D.T. Thompson,Catal. Rev. -Sci. Eng., 1999,41, 319CrossRefGoogle Scholar
  6. 6.
    ‘The Abilities and Potential of Gold as a Catalyst’ - Report of the Osaka National Research Institute (ONRI) No.393, August, 1999Google Scholar
  7. 7.
    M.J. Kahlich, H.A. Gasteiger and R.J. Behm,J. Catal., 1999,182, 430CrossRefGoogle Scholar
  8. 8.
    J. Jia, K. Haraki, J.N. Kondo, K. Domen and K. Tamaru,J. Phys. Chem. B, 2000,104, 11153CrossRefGoogle Scholar
  9. 9.
    C. Milone, R. Ingoglia, G. Neri, A. Pistone and S. Galvagno,Appl. Catal. A: General, 2001,211, 251CrossRefGoogle Scholar
  10. 10.
    S. Miao and Y. Deng,Appl. Catal. B: Environmental, 2001,31, L1-L4CrossRefGoogle Scholar
  11. 11.
    M. Bonarowska, A. Malinowski, W. Juszczyk and Z. Karpinski,Appl. Catalysis B: Environmental, 2001,30, 187CrossRefGoogle Scholar
  12. 12.
    R.J.H. Grisel and B.E. Nieuwenhuys,J. Catal., 2001,199, 48CrossRefGoogle Scholar
  13. 13.
    D. Andreeva, T. Tabakova, L. Ilieva, A. Naydenov, D. Mehanjiev and M.V. Abrashev,Appl. Catal. A: General, 2001,209, 291CrossRefGoogle Scholar
  14. 14.
    C. Baratto, G. Sberveglieri, E. Comini, G. Faglia, G. Benussi, V. La Ferrara, L. Quercia, G. Di Francia, V. Guidi, D. Vincenzi, D. Boscarino and V. Rigato,Sensors and Actuators B, 2001,68, 74CrossRefGoogle Scholar
  15. 15.
    A.K. Tripathi, N.M. Gupta, U.K. Chatterjee and D.D. Bhawalkar,Rev. Sci. Instrum., 1994,65, 3853CrossRefGoogle Scholar
  16. 16.
    A.K. Tripathi, N.M. Gupta, U.K. Chatterjee and R.M. Iyer,Ind. J. Technol., 1992,30, 107Google Scholar
  17. 17.
    S.D. Gardner, G.B. Hoflund, D.R. Schryer, J. Schryer, B.T. Upchurch and D.R. Brown, in ‘Low Temperature CO Oxidation Catalysts for Long-Life CO2 lasers’, ed., D.R. Schryer and G.B. Hoflund, NASA Conference Publication No. 3076, 1990, p.123Google Scholar
  18. 18.
    F. Boccuzzi, A. Chiorino, S. Tsubota and M. Haruta,J. Phys. Chem., 1996,100, 3625CrossRefGoogle Scholar
  19. 19.
    F. Boccuzzi, A. Chiorino, S. Tsubota and M. Haruta,Catal. Lett., 1994,29, 225CrossRefGoogle Scholar
  20. 20.
    M.A. Bollinger and M.A. Vannice,Appl. Catal. (B), 1996,8, 417Google Scholar
  21. 21.
    A. Knell, P. Barnickel, A. Baiker and A. Wokaun,J. Catal., 1992,137, 306CrossRefGoogle Scholar
  22. 22.
    A.M. Visco, A. Donato, C. Milone and S. Galvagno,React. Kinet. Catal. Lett., 1997,61, 219CrossRefGoogle Scholar
  23. 23.
    T.M. Salama, T. Shido, H. Minagawa, and M. Ichikawa,J. Catal., 1995,152, 322CrossRefGoogle Scholar
  24. 24.
    D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsutoba and M. Haruta,J. Catal., 1998,177, 1CrossRefGoogle Scholar
  25. 25.
    F. Boccuzzi and A. Chiorino,J. Phys. Chem. B, 2000,104, 5414CrossRefGoogle Scholar
  26. 26.
    T. Tabakova, V. Idakiev, D. Andreeva and I. Mitov,Appl. Catal., 2000,202, 91CrossRefGoogle Scholar
  27. 27.
    Y. -S. Su, M.-Y, Lee and A.D. Lin,Catal. Lett., 1999,57, 49CrossRefGoogle Scholar
  28. 28.
    M. Haruta,Catal. Today, 1997,36, 153CrossRefGoogle Scholar
  29. 29.
    W. Valden, X. Lai and D.W. Goodman,Science, 1998,281, 1647.CrossRefGoogle Scholar
  30. 30.
    L. Guczi, D. Horváth, Z. Pászti, L. Tóth, Z.E. Horváth, A. Karacs and G. Petõ,J. Phys. Chem. B, 2000,104, 3183CrossRefGoogle Scholar
  31. 31.
    J.-D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli and A. Baiker,J. Catal. 1999,186, 458CrossRefGoogle Scholar
  32. 32.
    G.C. Bond and D.T. Thompson,Gold Bull. 2000,33, 41Google Scholar
  33. 33.
    A.I. Kozlov, A.P. Kozlova, H. Liu and Y. Iwasawa,Appl. Catal. A. Gen., 1999,182, 9CrossRefGoogle Scholar
  34. 34.
    N.D. Gangal, N.M. Gupta and R.M. Iyer,J. Catal., 1990,126, 13CrossRefGoogle Scholar
  35. 35.
    N.D. Gangal, N.M. Gupta and R.M. Iyer,J. Catal., 1993,140, 443CrossRefGoogle Scholar
  36. 36.
    A.K. Tripathi and N.M. Gupta,J. Catal., 1995,153, 208CrossRefGoogle Scholar
  37. 37.
    V.P. Londhe and N.M. Gupta,J. Catal., 1997,169, 415CrossRefGoogle Scholar
  38. 38.
    A.K. Tripathi, V.S. Kamble and N.M. Gupta, J. Catal., 1999,187, 332CrossRefGoogle Scholar
  39. 39.
    N.M. Gupta and A.K. Tripathi,J. Catal., 1999,187, 343CrossRefGoogle Scholar
  40. 40.
    A.K. Tripathi, Ph.D. Thesis, Mumbai University, 1999Google Scholar
  41. 11.
    V.P. Londhe, V.S. Kamble and N.M. Gupta,J. Mol. Catal. A: Chemical, 1997,121, 33CrossRefGoogle Scholar
  42. 42.
    N.M. Gupta, V.S. Kamble, V.B. Kartha, R.M. Iyer, K.R. Thampi and M. Gratzel,J. Catal., 1994,146, 173CrossRefGoogle Scholar
  43. 43.
    F. Solymosi and J. Rasko,J. Catal., 1989,115, 107 or4|N.M. Gupta and A.K. Tripathi, unpublished workCrossRefGoogle Scholar
  44. 45.
    W.S. Epling, G.B. Hoflund, J.F. Weaver, S. Tsubota and M. Haruta,J. Phys. Chem., 1996,100, 9929CrossRefGoogle Scholar
  45. 46.
    D. Horváth, L. Tóth and L. Guczi,Catal. Lett., 2000,67, 117CrossRefGoogle Scholar
  46. 48.
    M. Che and C.O. Bennett, in Advances in Catalysis, ed., D.D. Eley, H. Pines and P.B. Weisz, Vol.36, p.76, Acad. Press, San Diego, CA, 1989Google Scholar
  47. 48.
    G.A. Somorjai in ‘Introduction to Surface Chemistry and Catalysis’, John Wiley, New York, 1994, p. 442Google Scholar

Copyright information

© World Gold Council 2001

Authors and Affiliations

  • Narendra M Gupta
    • 1
  • Arvind K Tripathi
    • 1
  1. 1.Applied Chemistry DivisionBhabha Atomic Research CentreTrombayIndia

Personalised recommendations