Advertisement

Journal of Applied Genetics

, Volume 51, Issue 4, pp 449–460 | Cite as

Variability of ribosomal DNA sites inFestuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH

  • T. Książczyk
  • M. Taciak
  • Z. Zwierzykowski
Original article

Abstract

This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploidFestuca pratensis andLolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploidF. pratensis ×L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) withL. perenne genomicDNAas a probe, andF. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. InF. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standardF. pratensis karyotypes. Losses of 45S rDNA loci were more frequent inL. perenne cultivars and intergeneric hybrids. Comparison of theF. pratensis andL. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location inL. perenne. A greater instability ofF. pratensis-genome-like andL. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 inF. pratensis and on chromosome 3 inL. perenne are useful markers for these chromosomes in intergenericFestuca ×Lolium hybrids.

Keywords

Festuca ×Lolium hybrids 5S rDNA 45S rDNA GISH rDNA-FISH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badaeva ED, Friebe B, Gill BS, 1996. Genome differentiation inAegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39: 1150–1158.CrossRefPubMedGoogle Scholar
  2. Bennett ST, Kenton AY, Bennett MD, 1992. Genomicin situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae). Chromosoma 101: 420–424.CrossRefGoogle Scholar
  3. Brysting AK, Holst-Jensen A, Leitch I, 2000. Genomic origin and organization of the hybridPoa jemtlandica (Poaceae) verified by genomicin situ hybridization and chloroplast DNA sequences. Ann Bot 85: 439–445.CrossRefGoogle Scholar
  4. Canter PH, Pašakinskiené I, Jones RN, Humphreys MW, 1999. Chromosome substitutions and recombination in the amphiploidLolium perenne ×Festuca pratensis cv. Prior (2n=4x=28). Theor Appl Genet 98: 809–814.CrossRefGoogle Scholar
  5. Chung MC, Lee YI, Cheng YY, Chou YJ, Lu CF, 2008. Chromosomal polymorphism of ribosomal genes in the genusOryza. Theor Appl Genet 116: 745–753.CrossRefPubMedGoogle Scholar
  6. Cuadrado A, Jouve N, 1997. Distribution of highly repeated DNA sequences in species of the genusSecale. Genome 40: 309–317.CrossRefPubMedGoogle Scholar
  7. Cuadrado A, Jouve N, 2002. Evolutionary trends of different repetitive DNA sequences during speciation in the genusSecale. J Heredity 93: 339–345.CrossRefGoogle Scholar
  8. Datson PM, Murray BG, 2006. Ribosomal DNA locus evolution inNemesia: transposition rather than structural rearrangement as the key mechanism? Chrom Res 14: 845–857.CrossRefPubMedGoogle Scholar
  9. Dubcovsky J, Dvorak J, 1995. Ribosomal RNA multigene loci: nomads of theTriticeae genomes. Genetics 140: 1367–1377.PubMedGoogle Scholar
  10. Dydak M, Kolano B, Nowak T, Siwinska D, Maluszynska J, 2009. Cytogenetic studies of three European species ofCentaurea L. (Asteraceae). Hereditas 146(4): 152–161.CrossRefPubMedGoogle Scholar
  11. Frello S, Heslop-Harrison JS, 2000. Chromosomal variation inCrocus vernus Hill (Iridaceae) investigated byin situ hybridization of rDNA and a tandemly repeated sequence. Ann Bot 86: 317–322.CrossRefGoogle Scholar
  12. Gerlach WL, Dyer TA, 1980. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucl Acids Res 11: 4851–4865.CrossRefGoogle Scholar
  13. Harper JA, Thomas ID, Lovatt JA, Thomas HM, 2004. Physical mapping of rDNA sites in possible diploid progenitors of polyploid Festuca species. Plant Syst Evol 245: 163–168.CrossRefGoogle Scholar
  14. Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J, 2001. Ribosomal DNA is an effective marker ofBrassica chromosomes. Theor Appl Genet 103: 486–490.CrossRefGoogle Scholar
  15. Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, et al. 2006. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97: 205–216.CrossRefPubMedGoogle Scholar
  16. Hayasaki M, Morikawa T, Tarumoto I, 2000. Intergenomic translocations of polyploid oats (genusAvena) revealed by genomicin situ hybridization. Genes Genet Syst 75: 167–171.CrossRefPubMedGoogle Scholar
  17. Hayasaki M, Morikawa T, Legget JM, 2001. Intraspecific variation of 18S-5.8S-26S rDNA sites revealed by FISH and RFLP in wild oat,Avena agadiriana. Genes Genet Syst 76: 9–14.CrossRefPubMedGoogle Scholar
  18. He S, Huang M, Huang J, Li J, Hu Y, Zhang L, et al. 2009. Dynamics of the evolution of the genus ofAgrostis revealed by GISH/FISH. Crop Sci 49: 2285–2290.CrossRefGoogle Scholar
  19. Huang J, Ma L, Yang F, Fei SZ, Li L, 2008. 45S rDNA regions are chromosome fragile sites expressed as gapsin vitro on metaphase chromosomes of root-tip meristematic cells inLolium spp. PLoS ONE 3(5): e2167. DOI:10.1371/journal.pone.0002167.CrossRefPubMedGoogle Scholar
  20. Jauhar PP, 1975. Chromosome relationships betweenLolium andFestuca (Gramineae). Chromosoma 52: 103–121.CrossRefGoogle Scholar
  21. Jiang J, Gill BS, 1994. New 18S.26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103: 179–185.CrossRefPubMedGoogle Scholar
  22. Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO et al. 2002. An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45: 282–295.CrossRefPubMedGoogle Scholar
  23. King IP, Morgan WG, Armstead IP, Harper JA, Hayward MD, Bollard A, et al. 1998. Introgression mapping in the grasses. I. Introgression ofFestuca pratensis chromosomes and chromosome segments intoLolium perenne. Heredity 81: 462–467.CrossRefGoogle Scholar
  24. King IP, Morgan WG, Harper JA, Thomas HM, 1999. Introgression mapping in the grasses. II. Meiotic analyses of theLolium perenne/Festuca pratensis triploid hybrids. Heredity 82: 107–112.CrossRefGoogle Scholar
  25. Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J, 2006. Genome constitution and evolution inLolium ×Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113: 731–742.CrossRefPubMedGoogle Scholar
  26. Kosmala A, Zwierzykowski Z, Gąsior D, Rapacz M, Zwierzykowska E, Humphreys MW, 2006. GISH/FISH mapping of genes for freezing tolerance transferred fromFestuca pratensis toLolium multiflorum. Heredity 96: 243–251.CrossRefPubMedGoogle Scholar
  27. Leitch IJ, Heslop-Harrison JS, 1992. Physical mapping of the 18S-5.8S-26S rRNA genes in barley byin situ hybridization. Genome 35: 1013–1018.Google Scholar
  28. Lideikytė L, Pašakinskiené I, 2007. Genomic composition of amphiploid ×Festu Lolium braunii cultivars ‘Punia’ and ‘Rakopan’. Agriculture 94: 189–196.Google Scholar
  29. Lideikytė L, Pašakinskienė I, Lemežienė N, Nekrošas S, Kanapeckas J, 2008. FISH assessment of ribosomal DNA sites in the chromosome sets ofLolium, Festuca andFestulolium. Agriculture 95: 116–124.Google Scholar
  30. Lombard V, Delourme R, 2001. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103: 491–507.CrossRefGoogle Scholar
  31. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I, 2006. Mechanisms of chromosome number reduction inArabidopsis thaliana and related Brassicaceae species. PNAS USA 103: 5224–5229.CrossRefPubMedGoogle Scholar
  32. Malik CP, Thomas PT, 1966. Karyotypic studies in someLolium andFestuca species. Caryologia 19: 167–196.Google Scholar
  33. Maluszynska J, Heslop-Harrison JS, 1993. Physical mapping of rDNA loci inBrassica species. Genome 36: 774–781.CrossRefPubMedGoogle Scholar
  34. Mishima M, Ohmido N, Fukui K, Yahara T, 2002. Trends in site-number change of rDNA loci during polyploid evolution inSanguisorba (Rosaceae). Chromosoma 110: 550–558.CrossRefPubMedGoogle Scholar
  35. Mukai Y, Nakahara Y, Yamamoto M, 1993. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescencein situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489–494.CrossRefPubMedGoogle Scholar
  36. Pedrosa-Harand A, de Almeida CCS, Mosiolek M, Blair MW, Schweizer D, Guerro M, 2006. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112: 924–933.CrossRefPubMedGoogle Scholar
  37. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, et al. 2004. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploidArabidopsis suecica genome. PNAS USA 101: 18240–18245.CrossRefPubMedGoogle Scholar
  38. Raskina O, Belyayev A, Nevo E, 2004a. Activity of theEn/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population ofAegilops speltoides Tausch. Chrom Res 12: 153–161.CrossRefPubMedGoogle Scholar
  39. Raskina O, Belyayev A, Nevo E, 2004b. Quantum speciation inAegilops: Molecular cytogenetic evidence from rDNA cluster variability in natural populations. PNAS USA 101: 14818–14823.CrossRefPubMedGoogle Scholar
  40. Schubert I, Wobus U, 1985.in situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148.CrossRefGoogle Scholar
  41. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA, 2001. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploids in wheat. Plant Cell 13: 1749–1759.CrossRefPubMedGoogle Scholar
  42. Thomas HM, 1981. The Giemsa C-band karyotypes of sixLolium species. Heredity 46: 263–267.CrossRefGoogle Scholar
  43. Thomas HM, Humphreys MO, 1991. Progress and potential of interspecific hybrids ofLolium andFestuca. J Agr Sci 117: 1–8.CrossRefGoogle Scholar
  44. Thomas HM, Harper JA, Meredith MR, Morgan WG, Thomas ID, Timms E, et al. 1996. Comparison of ribosomal DNA sites inLolium species by fluorescencein situ hybridization. Chrom Res 4: 486–490.CrossRefPubMedGoogle Scholar
  45. Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP, 1997. Physical mapping of ribosomal DNA sites inFestuca arundinacea and related species byin situ hybridization. Genome 40: 406–410.CrossRefPubMedGoogle Scholar
  46. Thomas HM, Harper JA, Morgan WG, 2001. Gross chromosome rearrangements are occurring in an accession of the grassLolium rigidum. Chrom Res 9: 585–590.CrossRefPubMedGoogle Scholar
  47. Unfried I, Gruendler P, 1990. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers fromArabidopsis thaliana. Nucl Acids Res 18: 4011.CrossRefPubMedGoogle Scholar
  48. Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V, 1999. Elimination and rearrangement of parental rDNA in the allotetraploidNicotiana tabacum. Mol Biol Evol 16: 311–320.PubMedGoogle Scholar
  49. Weiss H, Maluszynska J, 2000. Chromosomal rearrangement in autotetraploid plants ofArabidopsis thaliana. Hereditas 133: 255–261.CrossRefPubMedGoogle Scholar
  50. White SE, Habera LF, Wessler SR, 1994. Retrotransposons in the flanking regions of normal plant genes: a role forcopia-like elements in the evolution of the gene structure and expression. PNAS USA 91: 11792–11796.CrossRefPubMedGoogle Scholar
  51. Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones N, Jokoe W, Bocianowski J, 2006. Genome balance in six successive generations of the allotetraploidFestuca pratensis ×Lolium perenne. Theor Appl Genet 113: 539–547.CrossRefPubMedGoogle Scholar
  52. Zwierzykowski Z, Zwierzykowska E, Taciak M, Jones N, Kosmala A, Krajewski P, 2008. Chromosome pairing in allotetraploid hybrids ofFestuca pratensis ×Lolium perenne revealed by genomicin situ hybridization (GISH). Chrom Res 16: 575–585.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2010

Authors and Affiliations

  1. 1.Polish Academy of Sciences, Laboratory of Cytogenetics and Molecular BiologyInstitute of Plant GeneticsPoznańPoland

Personalised recommendations