Skip to main content
Log in

Mitochondria and aging: innocent bystanders or guilty parties?

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

There are many theories of aging and a number ofthem encompass the role of mitochondria in this process. Mitochondrial DNA mutations and deletions have been shown to accumulate in many tissues in mammals during aging. However, there is little evidence that these mutations could affect the functioning of aging tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, et al. 2008. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121: 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  • Amo T, Brand MD, 2007. Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines. Biochem J: 404: 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Amo T, Yadava N, Oh R, Nicholls DG, Brand MD, 2008. Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene. 411: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T, 2005. Mitochondria, oxidants and aging. Cell 120: 483–495.

    Article  CAS  PubMed  Google Scholar 

  • Berneburg M, Gattermann N, Stege H, 1997. Chronically ultraviolet-exposed humanskinshowsa higher mutation frequencyofmitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochem Photobiol 66: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Berneburg M, Grether-Beck S, Kurten V, Ruzicka T, Briviba K, Sies H, Krutmann J, 1999. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion, J Biol Chem 274: 15345–15349.

    Article  CAS  PubMed  Google Scholar 

  • Berneburg M, Plettenberg H, Medve-Konig K, Pfahlberg A, Gers-Barlag H, Gefeller O, Krutmann J, 2004. Induction of the photoaging-associated mito-chondrial common deletionin vivoinnormal human skin. J Invest Dermatol 122: 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  • Berneburg M, Kamenisch Y, Krutmann J, Rucken M, 2006. To repair or not to repair — no longer a question: repair of mitochondrial DNA shielding against age and cancer. Exp Dermatol 15: 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  • Birch-Machin MA, 2000. Mitochondria and skin disease. Clin Exp Dermatol 25: 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Birket MJ, Birch-Machin MA, 2007. Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin. Aging Cell 2007 6: 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Chinnery PF, Taylor GA, Howell N, Brown DT, Parsons TJ, Turnbull DM, 2001. Point mutations of the mtDNA control region in normal and neurodegenerative human brains. 68: 529–532.

  • Coskun PE, Flint Beal M, Wallace DC, 2004. Alzheimer’s brains harbor somatic mtDNA control mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 101: 10726–10731.

    Article  CAS  PubMed  Google Scholar 

  • Dahmani Y, Marcuello A, Díez-Sanchez C, Ruiz-Pesini E, Montoya J, López-Pérez MJ, 2008. Association of human mitochondrial DNA variants with plasma LDL levels. Mitochondrion 8: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, et al. 1999. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 13: 1532–1536.

    PubMed  Google Scholar 

  • Dufour E, Terzioglu M, Sterky FH, Soerensen L, Galter D, Olson L, et al. 2008. Age-associated mosaic respiratory chain deficiency causes trans-neuronal degeneration. Hum Mol Genet 17: 1418–1426.

    Article  CAS  PubMed  Google Scholar 

  • Elson JE, Turnbull DM, Taylor RW, 2007. Testing the adaptive selection of human mtDNA haplogroups: an experimental bioenergetics approach. Biochem J 404: e3-e5.

    Article  CAS  PubMed  Google Scholar 

  • Harbottle A, Birch-Machin MA, Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G, 1999. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286: 774–779.

    Article  Google Scholar 

  • Harman D, 1956. Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300.

    CAS  PubMed  Google Scholar 

  • Johnson FB, Sinclair DA, Guarente L, 1999. Molecular biology of aging. Cell 96: 291–302.

    Article  CAS  PubMed  Google Scholar 

  • Jou MJ, Peng TI, Wu HY, Wei YH, 2005. Enhanced generation of mitochondrial reactive oxygen species in cybrids containing 4977-bp mitochondrial DNA deletion. Ann NY Acad Sci 1042: 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Khrapko K, Kraytsberg Y, de Grey AD, Vijg J, Schon EA, 2006. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 5: 279–282.

    Article  CAS  PubMed  Google Scholar 

  • King MP, Attardi G, 1989. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500–503.

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TBL, 2005. Understanding the odd science of aging. Cell 120: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan KJ, Greaves LC, Reeve AK, Turnbull D, 2007. The ageing mitochondrial genome. Nucl Acids Res 35: 7399–7405.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan KJ, Harbottle A, Birch-Machin MA, 2004. The Use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin, J Invest Dermatol 123: 1020–1024.

    Article  CAS  PubMed  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484.

    Article  CAS  PubMed  Google Scholar 

  • Kukat A, Kukat C, Brocher J, Schäfer I, Krohne G, Trounce IA, et al. 2008. Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Res. 2008;36: e44. Epub 2008 Mar 19.

    Article  PubMed  Google Scholar 

  • Lightowlers RN, Jacobs HT, Kajander OA. 1999. Mitochondrial DNA — all things bad? Trends Genet 15: 91–93.

    Article  CAS  PubMed  Google Scholar 

  • Lu CY, Lee HC, Fahn HJ, Wei YH, 1999. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res 423: 11–21.

    CAS  PubMed  Google Scholar 

  • Lu CY, Lee CF, Wei YH, 2007. Quantitative effect of 4977 bp deletion of mitochondrial DNA on the susceptibility of human cells to UV-induced apoptosis. Mitochondrion 7: 89–95.

    Article  Google Scholar 

  • Liu VWS, Zhang C, Nagley P, 1998. Mutations in mitochondrial DNA accumulate differentially in three human tissues during aging. Nucleic Acids Res 26: 1268–1275.

    Article  CAS  PubMed  Google Scholar 

  • Moraes CT, Ricci E, Petruzzella V, Shanske S, DiMauro S, Schon EA, Bonilla E, 1992. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat Genet 1: 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Murdock DG, Christacos NC, Wallace DC., 2000. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res 28: 4350–4355.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara H, Kanno T, Inai Y, Utsumi K, Hiramatsu M, Mori A, Packer L, 1998. Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Radic Biol Med 4: 85–92.

    Article  Google Scholar 

  • Nekhaeva E, Bodyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, Pluzhnikov A, et al. 2002. Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci U S A 99: 5521–5526.

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, et al. 2007. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5: e110.

    Article  PubMed  Google Scholar 

  • Peng TI, Yu PR, Chen JY, Wang HL, Wu HY, Wei YH, Jou MJ, 2006. Visualizing common deletion of mitochondrial DNA-augmented mitochondrial reactive oxygen species generation and apoptosis upon oxidative stress. Biochim Biophys Acta 1762: 241–255.

    CAS  PubMed  Google Scholar 

  • Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AMS, et al. 2001. Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Rad Biol Med 30: 1–11.

    Article  Google Scholar 

  • Puizina-Ivić N, 2008. Skin aging. Acta Dermatovenerol Alp Panonica Adriat. 17: 47–54.

    PubMed  Google Scholar 

  • Ray AJ, Turner R, Nikaido O, Rees JL, Birch-Machin MA, 2000. The spectrum of mitochondrial DNA deletions is a ubiquitous marker of ultraviolet radiation exposure in human skin. J Invest Dermatol 115: 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Samuels DC, 2005. Mitochondrial DNA repeats constrain the life span of mammals. Trends Genet 20: 226–228.

    Article  Google Scholar 

  • Samuels DC, Carothers AD, Horton R, Chinnery PF, 2006. The power to detect disease associations with mitochondrial DNA haplogroups. Am J Hum Genet 78: 713–720.

    Article  CAS  PubMed  Google Scholar 

  • Santoro A, Salvioli S, Raule N, Capri M, Sevini S, Valensin S, et al. 2006. Mitochondrial DNA involvement in human longevity. Biochim Biophys Acta 1757: 1388–1399.

    Article  CAS  PubMed  Google Scholar 

  • Sawyer DE, Van Houten B, 1999. Repair of DNA damage in mitochondria. Mutat Res 434: 161–176

    CAS  PubMed  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, et al. 2005. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911.

    Article  CAS  PubMed  Google Scholar 

  • Sedensky MM, Morgan PG, 2006 Mitochondrial respiration and reactive oxygen species in mitochondrial aging mutants. Exp Gerontol 41: 237–45.

    Article  CAS  PubMed  Google Scholar 

  • Seibel P, Di Nunno C, Kukat C, Schäfer I, Del Bo R, Bordoni A, et al. 2008. Cosegregation of novel mitochondrial 16S rRNA gene mutations with the age-associated T414G variant in human cybrids. Nucleic Acids Res. Sep 16. [Epub ahead of print] PMID: 18796524 doi:10.1993/nar/gkn592

  • Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC, 1989. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 86: 7952–7956.

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, et al. 2004. Uncoupled and surviving: individual mice with high metabolism have higher mitochondrial uncoupling and live longer. Aging Cell 3: 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, 1999. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging. 20: 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, et al. 2005. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102: 17993–17998.

    Article  CAS  PubMed  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423.

    Article  CAS  PubMed  Google Scholar 

  • Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA, Loeb LA, 2008. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40: 392–4.

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39: 359–407.

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Ma YS, Lee HC, Lee CF, Lu CY, 2001. Mitochondrial theory of aging matures: roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi 64: 259–270.

    CAS  PubMed  Google Scholar 

  • Yakes FM, van Houten B, 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94: 514–519.

    Article  CAS  PubMed  Google Scholar 

  • Zegarska B, Woźniak M, 2006. Reasons of endogenous aging of the skin. Geront Pol 14: 153–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bartnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tońska, K., Sołyga, A. & Bartnik, E. Mitochondria and aging: innocent bystanders or guilty parties?. J Appl Genet 50, 55–62 (2009). https://doi.org/10.1007/BF03195653

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195653

Keywords

Navigation