Advertisement

Journal of Applied Genetics

, Volume 50, Issue 1, pp 1–7 | Cite as

Genetic background of host—pathogen interaction betweenCucumis sativus L. andPseudomonas syringae pv.lachrymans

  • H. Olczak-Woltman
  • M. Schollenberger
  • K. Niemirowicz-Szczytt
Review Article

Abstract

The interplay of plant resistance mechanisms and bacterial pathogenicity is very complex. This applies also to the interaction that takes place between the pathogenPseudomonas syringae pv.lachrymans (Smith et Bryan) and the cucumber (Cucumis sativus L.) as its host plant. Research onP. syringae pv.lachrymans has led to the discovery of specific factors produced during pathogenesis, i.e. toxins or enzymes. Similarly, studies on cucumber have identified the specific types of plant resistance expressed, namely Systemic Acquired Resistance (SAR) or Induced Systemic Resistance (ISR). This paper presents a summary of the current state of knowledge about this particular host-pathogen interaction, with reference to general information about interactions ofP. syringae pathovars with host plants.

Keywords

angular leaf spot bacterial plant pathogen cucumber resistance mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alström S, 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbio 137: 495–501.CrossRefGoogle Scholar
  2. Arnold DL, Jackson RW, Fillingham AJ, Goss SC, Taylor JD, Mansfield JW, Vivian A, 2001. Highly conserved sequences flank avirulence genes:isolation of novel avirulence genes fromPseudomonas syringae pv.pisi. Microbiology 147: 1171–1182.PubMedGoogle Scholar
  3. Bradbury JF, 1986. Guide to plant pathogenic bacteria. Ferry Lane, Kew, Surrey: CAB.Google Scholar
  4. Chand JN, Walker JC, 1964. Inheritance of resistance to angular leaf spot of cucumber. Phytopathology 54: 51–53.Google Scholar
  5. Cőkműs C, Sayar AH, 1991. Effect of salicylic acid on the control of bacterial speck of tomato caused byPseudomonas syringae pv.tomato. J Turk Phytopathol 20: 27–32.Google Scholar
  6. Collmer A, Badel J L, Charkowski AO, Deng W-L, Fouts DE, Ramos AR, et al. 2000.Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA 97: 8770–8777.CrossRefPubMedGoogle Scholar
  7. Collmer A, Bauer DW, He SY, Lindeberg M, Kelemu S, Rodriguez-Palenzuela P, et al. 1991. Pectic enzyme production and bacterial plant pathogenicity. In: Hennecke H, Verma DPS, eds. Advances in molecular genetics of plant-microbe interactions. Dordrecht: Kluwer Acad Publ 1: 65–72.Google Scholar
  8. Dessert JM, Baker LR, Fobes JF, 1982. Inheritance of reaction toPseudomonas lachrymans in pickling cucumber. Euphytica 31: 847–855.CrossRefGoogle Scholar
  9. Durner J, Shah J, Klessig D, 1997. Salicylic acid and disease resistance in plants. Trends Plant Sc 2: 266–274.CrossRefGoogle Scholar
  10. Fillingham AJ, Wood J, Bevan JR, Crute IR, Mansfield JW, Taylor JD, Vivian A, 1992. Avirulence genes fromPseudomonas syringae pathovarsphaseolicola andpisi confer specifity to-wards both host and non-host species. Physiol Mol Plant Pathol 40: 1–15.CrossRefGoogle Scholar
  11. Flor HH, 1971. Current status of the gene-for-gene concept. Anu Rev Phytopathol 9: 275–279.CrossRefGoogle Scholar
  12. Gijsegem van F, Genin S, Boucher Ch, 1995.hrp andavr genes, key determinants controlling the interactions between plants and Gram-negative phytopathogenic bacteria. In: Singh US, Singh RP, Kohmoto K, eds. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Langford Lane, New York, Tokyo: Pergamon, Elsevier Science: 1: 273–289.Google Scholar
  13. Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y, 1998. Auxin production is a common featureof most pathovars ofPseudomonas syringae. MPMI 11: 156–162.CrossRefPubMedGoogle Scholar
  14. Grgurina I, Bensaci M, Pocsfalvi G, Mannina L, Cruciani O, Fiore A, et al. 2005. Novel cyclic lipodepsipeptide fromPseudomonas syringae pv.lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob Agents Ch 49: 5037–5045.CrossRefGoogle Scholar
  15. Hennig J, Dewy R, Cutt J, Klessig D, 1993. Pathogen, salicylic acid and developmental dependent expression of β -1, 3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4: 481–493.CrossRefPubMedGoogle Scholar
  16. Hildebrand DC, 1971. Pectate and pectin gels for differentiation ofPseudomonas spp. and other bacterial plant pathogens. Phytopathology 61: 1430–1436.CrossRefGoogle Scholar
  17. Hutcheson SW, Bretz JR, Charity JC, Losada L, Sussan T, 2003. Regulation and detection of effectors translocated byPseudomonas syringae. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Murillo J, Schaad NW, Stead DE, Surico G, Ullrich MS, eds.Pseudomonas syringae and related pathogens. Biology and Genetic. Dordrecht: Kluwer Acad Publ: 147–156.Google Scholar
  18. Hwang MSH, Morgan RL, Sarkar SF, Wang W, Guttman DS, 2005. Phylogenetic characterization of virulence and resistance phenotypes ofPseudomonas syringae. Appl Environ Microbiol 71: 5182–5191.CrossRefPubMedGoogle Scholar
  19. Jankiewicz LS, Sobiczewski P, 1997. Fitoaleksynyiinne substancje związane z odpornością roślin przeciwko patogenom [Phytoalexins and other substances related to plantre sistance to pathogens]. In: Jankiewicz LS, eds. Regulatory wzrostu i rozwoju roślin. Właściwości i działanie [Plant growth and development regulators. Properties and action]. Warszawa: PWN: 1: 251–273.Google Scholar
  20. Kacperska A, 2002. Reakcje roślin na abiotyczne czynniki stresowe [Plant reactions to abiotic stress factors]. In: Kopcewicz J, Lewak S, eds. Fizjologia roślin [Plant Physiology]. Warszawa: PWN: 612–678.Google Scholar
  21. Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, et al. 1992. Bacteria expressing avirulence geneD produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Interact 3: 112–117.Google Scholar
  22. Keen NT, Williams PH, Walker JC, 1967a. Characterization of a protease produced byPseudomonas lachrymans. Phytopathology 57: 257–262.PubMedGoogle Scholar
  23. Keen NT, Williams PH, Walker JC, 1967b. Protease ofPseudomonas lachrymans in relation to cucumber angular leaf spot. Phytopathology 57: 263–270.PubMedGoogle Scholar
  24. Klement Z, Farkas GL, Lovrekovich L, 1964. Hyper-sensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54: 474–477.Google Scholar
  25. Kozłowska M, Konieczny G, 2003. Biologia odporności roślin na patogeny i szkodniki [Biology of plant resistance to pathogens and pests]. 1st ed. Poznań: Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego.Google Scholar
  26. Krzymowska M, 1998. Roślinne geny odporności i ich rola podczas infekcji [Plant resistance genes and their role during infection]. Postępy Biochemii [Progress in Biochemistry]. 44: 318–324.PubMedGoogle Scholar
  27. Liang LZ, Bing YY, Guo JZ, Lian LC, Xun ZC, Li ZL, Yuan YB, Ju ZG, Lin CL, Cao ZX, 1997.Pseudomonas syringae pv.lachrymans induced accumulation of salicylic acid in cucumber leaves. Acta Bot Sinica 39: 1010–1014.Google Scholar
  28. Lindgren PB, Panopoulos NJ, Staskawicz BJ, Dahlbeck D, 1988. Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars ofPseudomonas syringae. Mol Gen Genet 211: 499–506.CrossRefGoogle Scholar
  29. Liu L, Kloepper JW, Tuzun S, 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85: 843–847.CrossRefGoogle Scholar
  30. Maleck K, Lawton K, 1998. Plant strategies for resistance to pathogens. Curr Opin Biotech 9: 208–213.CrossRefGoogle Scholar
  31. Meuwly P, Molders W, Buchala A, Metraux J, 1995. Local and systemic biosynthesis of salicylic acid infected cucumber plants. Plant Physiology 109: 1107–1114.PubMedGoogle Scholar
  32. Meuwly P, Molders W, Summermatter K, Stricher L, Metraux J, 1994. Salicylic acid and chitinase in infected cucumber plants. Acta Horticulturae 381: 371–374.Google Scholar
  33. Olczak-Woltman H, Bartoszewski G, Mądry W, Niemirowicz-Szczytt K, 2009. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv.lachrymans) in cucumber (Cucumis sativus L.) and identification of molecular markers linked to resistance. Plant Pathol 58: 145–151.CrossRefGoogle Scholar
  34. Olczak-Woltman H, Masny A, Bartoszewski G, Plucienniczak A, Niemirowicz-Szczytt K, 2007. Genetic diversity ofPseudomonas syringae pv.lachrymans strains isolated from cucumber leaves collected in Poland. Plant Pathol 56: 373–382.CrossRefGoogle Scholar
  35. Olczak-Woltman H, Schollenberger M, Mądry W, Niemirowicz-Szczytt K, 2008. Evaluation of cucumber (Cucumis sativus L.) cultivars grown in Eastern Europe and progress in breeding for resistance to angular leaf spot (Pseudomonas syringae pv.lachrymans). Eur J Plant Pathol 122: 385–393.CrossRefGoogle Scholar
  36. Pohronezny K, Larsen PO, Leben C, 1977. Observations on cucumber fruit invasion byPseudomonas lachrymans. Plant Dis Rep 62: 306–309.Google Scholar
  37. Raupach GS, Kloepper JW, 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158–1164.CrossRefPubMedGoogle Scholar
  38. Rudolph KWE, 1995.Pseudomonas syringae pathovars. In: Singh US, Singh RP, Kohmoto K, eds. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Langford Lane, New York, Tokyo: Pergamon, Elsevier Science: 1: 47–138.Google Scholar
  39. Sawada H, Suzuki F, Matsuda I, Saitou N, 1999. Phylogenetic analysis ofPseudomonas syringae pathovars suggests the horizontal gene transfer ofargK and the evolutionary stability ofhrp gene transfer. J Mol Ewol 49: 627–644.CrossRefGoogle Scholar
  40. Schaad NW, Jones JB, Chun W, 2001. Laboratory guide for identification of plant pathogenic bacteria. Minnesota: APS Press.Google Scholar
  41. Shida T, Misato T, 1981. Studies on cucumber angular leaf spot disease: necrosis-inducing toxin production byPseudomonas syringae pv.lachrymans. Sci Pap Inst Phys Chem Res 75: 4853.Google Scholar
  42. Smidt M, Kosuge T, 1978. The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants ofPseudomonas savastanoi in gall formation on oleanders. Psysiol Plant Pathol 13: 203–214.CrossRefGoogle Scholar
  43. Smith JA, Hammerschmidt R, Fulbright DW, 1991. Rapid introduction of systemic resistance in cucumber byPseudomonas syringae pv.syringae. Physiol Mol Plant Pathol 38: 223–235.CrossRefGoogle Scholar
  44. Smith-Becker J, Marois E, Huguet EJ, Midland SL, Sims JJ, Keen NT, 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonialyase activity in petioles and stems. Plant Physiol 116: 231–238.CrossRefPubMedGoogle Scholar
  45. Spitali M, Smith ARW, 2000. Structure of lipopolysaccharide side-chain ofPseudomonas syringae pv.lachrymans NCPPB 1096, in relation to O-serogroup. J Phytopathol 148: 563–568.CrossRefGoogle Scholar
  46. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG, 1995. Molecular genetics of plant disease resistance. Science 286: 661–666.CrossRefGoogle Scholar
  47. Staskawicz BJ, Dahlbeck D, Keen NT, 1984. Cloned avirulence gene ofPseudomonas syringae pv.glycinea determines race-specific incompability onGlycine max (L.) Merr. Proc Natl Acad Sci USA 81: 6024–6028.CrossRefPubMedGoogle Scholar
  48. Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE, 2001. Common and contrasting themes of plant and animal diseases. Science 292: 2285–2289.CrossRefPubMedGoogle Scholar
  49. Stintzi A, Heitz T, Prasad V, Wiedemenn-Merinoglu S, Kauffmann S, Geoffroy P, et al. 1993. Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75: 687–706.CrossRefPubMedGoogle Scholar
  50. Stokes T, Kunkel B, Richards E, 2002. Epigenic variation inArabidopsis disease resistance. Gene Dev 16: 171–182.CrossRefPubMedGoogle Scholar
  51. Strobel NE, Ji C, Gopalan S, Kuc JA, He SY, 1996. Induction of systemic acquired resistance in cucumber byPseudomonas syringae pv.syringae 61 HrpZPss protein. Plant J 9: 431–439.CrossRefGoogle Scholar
  52. Wehner T, 2005. Gene list for cucumber. Cucurbit Genet Coop Rpt 28-29: 105–141.Google Scholar
  53. Wei G, Kloepper J, Tuzun S, 1991. Induction of systemic resistance of cucumber toColletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508–1512.CrossRefGoogle Scholar
  54. Whalen MC, Stall RE, Staskawicz BJ, 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 85: 6743–6749.CrossRefPubMedGoogle Scholar
  55. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I, 2003. Concomitant induction of systemic resistance toPseudomonas syringae pv.lachrymans in cucumber byTrichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Envir Microbiol 69: 7343–7353.CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2009

Authors and Affiliations

  • H. Olczak-Woltman
    • 1
  • M. Schollenberger
    • 2
  • K. Niemirowicz-Szczytt
    • 1
  1. 1.Department of Plant Genetics, Breeding and BiotechnologyWarsaw University of Life SciencesWarsawPoland
  2. 2.Department of Plant PathologyWarsaw University of Life SciencesWarsawPoland

Personalised recommendations