Skip to main content
Log in

Genetic background of host—pathogen interaction betweenCucumis sativus L. andPseudomonas syringae pv.lachrymans

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The interplay of plant resistance mechanisms and bacterial pathogenicity is very complex. This applies also to the interaction that takes place between the pathogenPseudomonas syringae pv.lachrymans (Smith et Bryan) and the cucumber (Cucumis sativus L.) as its host plant. Research onP. syringae pv.lachrymans has led to the discovery of specific factors produced during pathogenesis, i.e. toxins or enzymes. Similarly, studies on cucumber have identified the specific types of plant resistance expressed, namely Systemic Acquired Resistance (SAR) or Induced Systemic Resistance (ISR). This paper presents a summary of the current state of knowledge about this particular host-pathogen interaction, with reference to general information about interactions ofP. syringae pathovars with host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alström S, 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbio 137: 495–501.

    Article  Google Scholar 

  • Arnold DL, Jackson RW, Fillingham AJ, Goss SC, Taylor JD, Mansfield JW, Vivian A, 2001. Highly conserved sequences flank avirulence genes:isolation of novel avirulence genes fromPseudomonas syringae pv.pisi. Microbiology 147: 1171–1182.

    CAS  PubMed  Google Scholar 

  • Bradbury JF, 1986. Guide to plant pathogenic bacteria. Ferry Lane, Kew, Surrey: CAB.

    Google Scholar 

  • Chand JN, Walker JC, 1964. Inheritance of resistance to angular leaf spot of cucumber. Phytopathology 54: 51–53.

    Google Scholar 

  • Cőkműs C, Sayar AH, 1991. Effect of salicylic acid on the control of bacterial speck of tomato caused byPseudomonas syringae pv.tomato. J Turk Phytopathol 20: 27–32.

    Google Scholar 

  • Collmer A, Badel J L, Charkowski AO, Deng W-L, Fouts DE, Ramos AR, et al. 2000.Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA 97: 8770–8777.

    Article  CAS  PubMed  Google Scholar 

  • Collmer A, Bauer DW, He SY, Lindeberg M, Kelemu S, Rodriguez-Palenzuela P, et al. 1991. Pectic enzyme production and bacterial plant pathogenicity. In: Hennecke H, Verma DPS, eds. Advances in molecular genetics of plant-microbe interactions. Dordrecht: Kluwer Acad Publ 1: 65–72.

    Google Scholar 

  • Dessert JM, Baker LR, Fobes JF, 1982. Inheritance of reaction toPseudomonas lachrymans in pickling cucumber. Euphytica 31: 847–855.

    Article  Google Scholar 

  • Durner J, Shah J, Klessig D, 1997. Salicylic acid and disease resistance in plants. Trends Plant Sc 2: 266–274.

    Article  Google Scholar 

  • Fillingham AJ, Wood J, Bevan JR, Crute IR, Mansfield JW, Taylor JD, Vivian A, 1992. Avirulence genes fromPseudomonas syringae pathovarsphaseolicola andpisi confer specifity to-wards both host and non-host species. Physiol Mol Plant Pathol 40: 1–15.

    Article  Google Scholar 

  • Flor HH, 1971. Current status of the gene-for-gene concept. Anu Rev Phytopathol 9: 275–279.

    Article  Google Scholar 

  • Gijsegem van F, Genin S, Boucher Ch, 1995.hrp andavr genes, key determinants controlling the interactions between plants and Gram-negative phytopathogenic bacteria. In: Singh US, Singh RP, Kohmoto K, eds. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Langford Lane, New York, Tokyo: Pergamon, Elsevier Science: 1: 273–289.

    Google Scholar 

  • Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y, 1998. Auxin production is a common featureof most pathovars ofPseudomonas syringae. MPMI 11: 156–162.

    Article  CAS  PubMed  Google Scholar 

  • Grgurina I, Bensaci M, Pocsfalvi G, Mannina L, Cruciani O, Fiore A, et al. 2005. Novel cyclic lipodepsipeptide fromPseudomonas syringae pv.lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob Agents Ch 49: 5037–5045.

    Article  CAS  Google Scholar 

  • Hennig J, Dewy R, Cutt J, Klessig D, 1993. Pathogen, salicylic acid and developmental dependent expression of β -1, 3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4: 481–493.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand DC, 1971. Pectate and pectin gels for differentiation ofPseudomonas spp. and other bacterial plant pathogens. Phytopathology 61: 1430–1436.

    Article  Google Scholar 

  • Hutcheson SW, Bretz JR, Charity JC, Losada L, Sussan T, 2003. Regulation and detection of effectors translocated byPseudomonas syringae. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Murillo J, Schaad NW, Stead DE, Surico G, Ullrich MS, eds.Pseudomonas syringae and related pathogens. Biology and Genetic. Dordrecht: Kluwer Acad Publ: 147–156.

    Google Scholar 

  • Hwang MSH, Morgan RL, Sarkar SF, Wang W, Guttman DS, 2005. Phylogenetic characterization of virulence and resistance phenotypes ofPseudomonas syringae. Appl Environ Microbiol 71: 5182–5191.

    Article  CAS  PubMed  Google Scholar 

  • Jankiewicz LS, Sobiczewski P, 1997. Fitoaleksynyiinne substancje związane z odpornością roślin przeciwko patogenom [Phytoalexins and other substances related to plantre sistance to pathogens]. In: Jankiewicz LS, eds. Regulatory wzrostu i rozwoju roślin. Właściwości i działanie [Plant growth and development regulators. Properties and action]. Warszawa: PWN: 1: 251–273.

    Google Scholar 

  • Kacperska A, 2002. Reakcje roślin na abiotyczne czynniki stresowe [Plant reactions to abiotic stress factors]. In: Kopcewicz J, Lewak S, eds. Fizjologia roślin [Plant Physiology]. Warszawa: PWN: 612–678.

    Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, et al. 1992. Bacteria expressing avirulence geneD produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Interact 3: 112–117.

    Google Scholar 

  • Keen NT, Williams PH, Walker JC, 1967a. Characterization of a protease produced byPseudomonas lachrymans. Phytopathology 57: 257–262.

    CAS  PubMed  Google Scholar 

  • Keen NT, Williams PH, Walker JC, 1967b. Protease ofPseudomonas lachrymans in relation to cucumber angular leaf spot. Phytopathology 57: 263–270.

    CAS  PubMed  Google Scholar 

  • Klement Z, Farkas GL, Lovrekovich L, 1964. Hyper-sensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54: 474–477.

    Google Scholar 

  • Kozłowska M, Konieczny G, 2003. Biologia odporności roślin na patogeny i szkodniki [Biology of plant resistance to pathogens and pests]. 1st ed. Poznań: Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego.

    Google Scholar 

  • Krzymowska M, 1998. Roślinne geny odporności i ich rola podczas infekcji [Plant resistance genes and their role during infection]. Postępy Biochemii [Progress in Biochemistry]. 44: 318–324.

    CAS  PubMed  Google Scholar 

  • Liang LZ, Bing YY, Guo JZ, Lian LC, Xun ZC, Li ZL, Yuan YB, Ju ZG, Lin CL, Cao ZX, 1997.Pseudomonas syringae pv.lachrymans induced accumulation of salicylic acid in cucumber leaves. Acta Bot Sinica 39: 1010–1014.

    Google Scholar 

  • Lindgren PB, Panopoulos NJ, Staskawicz BJ, Dahlbeck D, 1988. Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars ofPseudomonas syringae. Mol Gen Genet 211: 499–506.

    Article  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S, 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85: 843–847.

    Article  Google Scholar 

  • Maleck K, Lawton K, 1998. Plant strategies for resistance to pathogens. Curr Opin Biotech 9: 208–213.

    Article  CAS  Google Scholar 

  • Meuwly P, Molders W, Buchala A, Metraux J, 1995. Local and systemic biosynthesis of salicylic acid infected cucumber plants. Plant Physiology 109: 1107–1114.

    CAS  PubMed  Google Scholar 

  • Meuwly P, Molders W, Summermatter K, Stricher L, Metraux J, 1994. Salicylic acid and chitinase in infected cucumber plants. Acta Horticulturae 381: 371–374.

    CAS  Google Scholar 

  • Olczak-Woltman H, Bartoszewski G, Mądry W, Niemirowicz-Szczytt K, 2009. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv.lachrymans) in cucumber (Cucumis sativus L.) and identification of molecular markers linked to resistance. Plant Pathol 58: 145–151.

    Article  Google Scholar 

  • Olczak-Woltman H, Masny A, Bartoszewski G, Plucienniczak A, Niemirowicz-Szczytt K, 2007. Genetic diversity ofPseudomonas syringae pv.lachrymans strains isolated from cucumber leaves collected in Poland. Plant Pathol 56: 373–382.

    Article  CAS  Google Scholar 

  • Olczak-Woltman H, Schollenberger M, Mądry W, Niemirowicz-Szczytt K, 2008. Evaluation of cucumber (Cucumis sativus L.) cultivars grown in Eastern Europe and progress in breeding for resistance to angular leaf spot (Pseudomonas syringae pv.lachrymans). Eur J Plant Pathol 122: 385–393.

    Article  Google Scholar 

  • Pohronezny K, Larsen PO, Leben C, 1977. Observations on cucumber fruit invasion byPseudomonas lachrymans. Plant Dis Rep 62: 306–309.

    Google Scholar 

  • Raupach GS, Kloepper JW, 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KWE, 1995.Pseudomonas syringae pathovars. In: Singh US, Singh RP, Kohmoto K, eds. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Langford Lane, New York, Tokyo: Pergamon, Elsevier Science: 1: 47–138.

    Google Scholar 

  • Sawada H, Suzuki F, Matsuda I, Saitou N, 1999. Phylogenetic analysis ofPseudomonas syringae pathovars suggests the horizontal gene transfer ofargK and the evolutionary stability ofhrp gene transfer. J Mol Ewol 49: 627–644.

    Article  CAS  Google Scholar 

  • Schaad NW, Jones JB, Chun W, 2001. Laboratory guide for identification of plant pathogenic bacteria. Minnesota: APS Press.

    Google Scholar 

  • Shida T, Misato T, 1981. Studies on cucumber angular leaf spot disease: necrosis-inducing toxin production byPseudomonas syringae pv.lachrymans. Sci Pap Inst Phys Chem Res 75: 4853.

    Google Scholar 

  • Smidt M, Kosuge T, 1978. The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants ofPseudomonas savastanoi in gall formation on oleanders. Psysiol Plant Pathol 13: 203–214.

    Article  CAS  Google Scholar 

  • Smith JA, Hammerschmidt R, Fulbright DW, 1991. Rapid introduction of systemic resistance in cucumber byPseudomonas syringae pv.syringae. Physiol Mol Plant Pathol 38: 223–235.

    Article  Google Scholar 

  • Smith-Becker J, Marois E, Huguet EJ, Midland SL, Sims JJ, Keen NT, 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonialyase activity in petioles and stems. Plant Physiol 116: 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Spitali M, Smith ARW, 2000. Structure of lipopolysaccharide side-chain ofPseudomonas syringae pv.lachrymans NCPPB 1096, in relation to O-serogroup. J Phytopathol 148: 563–568.

    Article  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG, 1995. Molecular genetics of plant disease resistance. Science 286: 661–666.

    Article  Google Scholar 

  • Staskawicz BJ, Dahlbeck D, Keen NT, 1984. Cloned avirulence gene ofPseudomonas syringae pv.glycinea determines race-specific incompability onGlycine max (L.) Merr. Proc Natl Acad Sci USA 81: 6024–6028.

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE, 2001. Common and contrasting themes of plant and animal diseases. Science 292: 2285–2289.

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemenn-Merinoglu S, Kauffmann S, Geoffroy P, et al. 1993. Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75: 687–706.

    Article  CAS  PubMed  Google Scholar 

  • Stokes T, Kunkel B, Richards E, 2002. Epigenic variation inArabidopsis disease resistance. Gene Dev 16: 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Strobel NE, Ji C, Gopalan S, Kuc JA, He SY, 1996. Induction of systemic acquired resistance in cucumber byPseudomonas syringae pv.syringae 61 HrpZPss protein. Plant J 9: 431–439.

    Article  CAS  Google Scholar 

  • Wehner T, 2005. Gene list for cucumber. Cucurbit Genet Coop Rpt 28-29: 105–141.

    Google Scholar 

  • Wei G, Kloepper J, Tuzun S, 1991. Induction of systemic resistance of cucumber toColletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508–1512.

    Article  Google Scholar 

  • Whalen MC, Stall RE, Staskawicz BJ, 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 85: 6743–6749.

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I, 2003. Concomitant induction of systemic resistance toPseudomonas syringae pv.lachrymans in cucumber byTrichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Envir Microbiol 69: 7343–7353.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Olczak-Woltman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olczak-Woltman, H., Schollenberger, M. & Niemirowicz-Szczytt, K. Genetic background of host—pathogen interaction betweenCucumis sativus L. andPseudomonas syringae pv.lachrymans . J Appl Genet 50, 1–7 (2009). https://doi.org/10.1007/BF03195645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195645

Keywords

Navigation