Advertisement

Journal of Applied Genetics

, Volume 49, Issue 2, pp 193–199 | Cite as

Cancer stem cells: the theory and perspectives in cancer therapy

  • Justyna Gil
  • Agnieszka Stembalska
  • Karolina A. Pesz
  • Maria M. Sąsiadek
Review Article

Abstract

The cancer stem cell theory elucidates not only the issue of tumour initiation and development, tumour’s ability to metastasise and reoccur, but also the ineffectiveness of conventional cancer therapy. This review examines stem cell properties, such as self-renewal, heterogeneity, and resistance to apoptosis. The ‘niche’ hypothesis is presented, and mechanisms of division, differentiation, self-renewal and signalling pathway regulation are explained. Epigenetic alterations and mutations of genes responsible for signal transmission may promote the formation of cancer stem cells. We also present the history of development of the cancer stem cell theory and discuss the experiments that led to the discovery and confirmation of the existence of cancer stem cells. Potential clinical applications are also considered, including therapeutic models aimed at selective elimination of cancer stem cells or induction of their proper differentiation.

Keywords

cancer cancer stem cells cancer stem cell theory stem cells therapeutic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF, 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.CrossRefPubMedGoogle Scholar
  2. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.CrossRefPubMedGoogle Scholar
  3. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJA, 2005. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5: 899–904.CrossRefPubMedGoogle Scholar
  4. Bonnet D, Dick JE, 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoetic cell. Nat Med 3: 730–737.CrossRefPubMedGoogle Scholar
  5. Calabrese P, Tavare S, Shibata D, 2004. Pretumor progression: clonal evolution of human stem cells populations. Am J Pathol 164: 1369–1377.PubMedGoogle Scholar
  6. auClarke MF, Becker MW, 2006. Stem cells: the real culprits in cancer? http://www.sciam.comGoogle Scholar
  7. Clarke MF, Fuller M, 2006. Stem cells and cancer: two faces of eve. Cell 124: 1111–1115.CrossRefPubMedGoogle Scholar
  8. Costa FF, Le Blanc K, Brodin B, 2006. Cancer/Testis antigens, stem cells and cancer. Http://www. StemCells.comGoogle Scholar
  9. Driks PB, 2006. Stem cells and brain tumours. Nature 4444: 687–688.CrossRefGoogle Scholar
  10. Fialkow PJ, Gartler SM, Yoshida A, 1967. Clonal origin of chronic myelocytic leukemia in man. PNAS 58: 1468–1471.CrossRefPubMedGoogle Scholar
  11. Guo W, Lasky III JL,Wu H, 2006. Cancer stem cells. Pediatr Res 4: 59–64.CrossRefGoogle Scholar
  12. Huntly BJP and Gilliland DG, 2005. Leukemia stem cells and the evolution of Cancer Stem Cells. Nature Reviews Cancer 5: 311–321CrossRefPubMedGoogle Scholar
  13. Jordan CT, Guzman ML, Noble M, 2006. Cancer stem cells. N Engl J Med 355: 1253–1261.CrossRefPubMedGoogle Scholar
  14. Kucia M, Ratajczak MZ, 2006. Stem cells as a two edged sword — from regeneration to tumor formation. J Physiol Pharmacol 57: 5–16.Google Scholar
  15. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, et al. 2005. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1?CXCR4 axis. Stem Cells 23: 879–894.CrossRefPubMedGoogle Scholar
  16. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. 2007. Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037.CrossRefPubMedGoogle Scholar
  17. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ, 2003. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967.CrossRefPubMedGoogle Scholar
  18. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF, 2003. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.CrossRefPubMedGoogle Scholar
  19. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. 2006. Bone morpho-genetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765.CrossRefPubMedGoogle Scholar
  20. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. 2005. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506–5511.CrossRefPubMedGoogle Scholar
  21. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA, 2002. Stemness: transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600.CrossRefPubMedGoogle Scholar
  22. Reya T, Morrison S, Clarke M, Weissman I, 2001. Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.CrossRefPubMedGoogle Scholar
  23. Spradling A, Drummond-Barbosa D, Kai T, 2001. Stem cells find their niche. Nature 414: 98–104.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2008

Authors and Affiliations

  • Justyna Gil
    • 1
  • Agnieszka Stembalska
    • 1
  • Karolina A. Pesz
    • 1
  • Maria M. Sąsiadek
    • 1
  1. 1.Department of GeneticsMedical University of WroclawWrocławPoland

Personalised recommendations