Skip to main content
Log in

Bone-marrow-derived stem cells — our key to longevity?

  • Invited Editorial
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Bone marrow (BM) was for many years primarily regarded as the source of hematopoietic stem cells. In this review we discuss current views of the BM stem cell compartment and present data showing that BM contains not only hematopoietic but also heterogeneous non-hematopoietic stem cells. It is likely that similar or overlapping populations of primitive non-hematopoietic stem cells in BM were detected by different investigators using different experimental strategies and hence were assigned different names (e.g., mesenchymal stem cells, multipotent adult progenitor cells, or marrow-isolated adult multilineage inducible cells). However, the search still continues for true pluripotent stem cells in adult BM, which would fulfill the required criteria (e.g. complementation of blastocyst development). Recently our group has identified in BM a population of very small embryonic-like stem cells (VSELs), which express several markers characteristic for pluripotent stem cells and are found during early embryogenesis in the epiblast of the cylinder-stage embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ, 2004. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110: 3300–3305

    Article  PubMed  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. 1999. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228.

    CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.

    Article  CAS  PubMed  Google Scholar 

  • Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, et al. 2004. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10: 64–71.

    Article  CAS  PubMed  Google Scholar 

  • Boiani M, Schöler HR, 2005. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6: 872–884.

    Article  CAS  PubMed  Google Scholar 

  • Bradley A, Evans M, Kaufman MH, Robertson E, 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256.

    Article  CAS  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A, 1994. Circulating fibrocytes define anew leukocyte subpopulation that mediates tissue repair. Mol Med 1: 71–81.

    CAS  PubMed  Google Scholar 

  • Bunting KD, Hawley RG, 2003. Integrative molecular and developmental biology of adult stem cells. Biol Cell 95: 563–578.

    Article  CAS  PubMed  Google Scholar 

  • Buzańska L, Machaj EK, Zabłocka B, Pojda Z, Domańska-Janik K, 2002. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115: 2131–2138.

    PubMed  Google Scholar 

  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM, 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98: 2396–2402.

    Article  CAS  PubMed  Google Scholar 

  • Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD, 2002. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297: 1299.

    Article  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. 2004. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864.

    Article  CAS  PubMed  Google Scholar 

  • Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, et al. 2003. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9: 1528–1532.

    Article  CAS  PubMed  Google Scholar 

  • Corti S, Locatelli F, Donadoni C, Strazzer S, Salani S, Del Bo R, et al. 2002a. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J Neurosci Res 70: 721–733.

    Article  CAS  PubMed  Google Scholar 

  • Corti S, Strazzer S, Del Bo R, Salani S, Bossolasco P, Fortunato F, et al. 2002b. A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse. Exp Cell Res 277: 74–85.

    Article  CAS  PubMed  Google Scholar 

  • Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV, 2000. CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1 alpha. J Immunol 165: 4372–4378.

    CAS  PubMed  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC, 2004. Marrow-isolated adult multilineage inducible (MIAMI) cells, aunique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117: 2971–2981.

    Article  PubMed  CAS  Google Scholar 

  • De Felici M, McLaren A, 1983. In vitro culture of mouse primordial germ cells. Exp Cell Res 144: 417–427.

    Article  Google Scholar 

  • Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K, et al. 2004. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  • Devine SM, Hoffman R, 2000. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol 7: 358–363.

    Article  CAS  PubMed  Google Scholar 

  • Dexter TM, Spooncer E, 1987. Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 3.

  • Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, et al. 2004. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 36: 603–613.

    Article  PubMed  Google Scholar 

  • Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S, et al. 2006. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66: 7341–7347.

    Article  CAS  PubMed  Google Scholar 

  • Donovan PJ, 1994. Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 29.

  • Donovan PJ, 1998. The germ cell — the mother of all stem cells. Int J Dev Biol 42: 1043–1050.

    CAS  PubMed  Google Scholar 

  • Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S, 2005. Circulating osteoblastlineage cells in humans. N Engl J Med 352: 1959–1966.

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH, 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD, et al. 2006. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 176: 1916–1927.

    CAS  PubMed  Google Scholar 

  • Hasegawa T, Kosaki A, Shimizu K, Matsubara H, Mori Y, Masaki H, et al. 2006. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocininduced diabetic rats. Exp Neurol 199: 274–280.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH, 2004. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113: 243–252.

    CAS  PubMed  Google Scholar 

  • Hatch HM, Zheng D, Jorgensen ML, Petersen BE, 2002. SDF-1 alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells 4: 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, et al. 2003. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21: 763–770.

    Article  CAS  PubMed  Google Scholar 

  • Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, et al. 2004. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol 186: 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, et al. 2004. SDF-1 (CXCL 12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63: 84–96.

    CAS  PubMed  Google Scholar 

  • Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H, 2002. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46: 2587–2597.

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Jaenisch R, 2003. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med 349: 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. 2005. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7: 393–395.

    Article  CAS  PubMed  Google Scholar 

  • Houchen CW, George RJ, Sturmoski MA, Cohn SM, 1999. FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol 276: G249–258.

    CAS  PubMed  Google Scholar 

  • Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, et al. 2004. Gastric cancer originating from bone marrow-derived cells. Science 306.

  • Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. 2001. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395–1402.

    Article  CAS  PubMed  Google Scholar 

  • Ji JF, He BP, Dheen ST and Tay SS, 2004. Expression of chemokine receptors CXCR4, CCR2, CCR5 and CX3CR1 in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neurosci Lett 355: 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, et al. 2006. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006 May; 12(5): 12: 557–567.

    Article  CAS  Google Scholar 

  • Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. 2005. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122: 303–315.

    Article  CAS  PubMed  Google Scholar 

  • Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG, 2003. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112: 42–49.

    CAS  PubMed  Google Scholar 

  • Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. 2001. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637.

    CAS  PubMed  Google Scholar 

  • Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, et al. 2003. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112: 160–169.

    CAS  PubMed  Google Scholar 

  • Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, et al. 2004. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95: 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  • Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, et al. 2007. Morphological and molecular characterization of novel population of CXCR4(+) SSEA-4(+) Oct-4(+) very small embryonic-like cells purified from human cord blood — preliminary report. Leukemia 21: 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Kucia M, Ratajczak J, Ratajczak MZ, 2005a. Are bone marrow stem cells plastic or heterogeneous — that is the question. Exp Hematol 33: 613–623.

    Article  PubMed  Google Scholar 

  • Kucia M, Ratajczak J, Ratajczak MZ, 2005b. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97: 133–146.

    Article  CAS  PubMed  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, et al. 2006a. A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20: 857–869.

    Article  CAS  PubMed  Google Scholar 

  • Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ, 2005c. Bone marrow as a home of heterogeneous populations of nonhematopoietic stem cells. Leukemia 19: 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  • Kucia M, Wojakowski W, Reca R, Machalinski B, Gozdzik J, Majka M, et al. 2006b. The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch Immunol Ther Exp (Warsz) 54: 121–135.

    Article  CAS  Google Scholar 

  • Kucia M, Zhang YP, Reca R et al. 2006c. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20: 18–28.

    Article  CAS  PubMed  Google Scholar 

  • Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M, et al. 2006d. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20: 18–28.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG, 2001. Circulating skeletal stem cells. J Cell Biol 153: 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  • LaBarge MA, Blau HM, 2002. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111: 589–601.

    Article  CAS  PubMed  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. 2000. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6: 1229–1234.

    Article  CAS  PubMed  Google Scholar 

  • Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M, 2003. Role of the al-pha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42: 139–148.

    Article  PubMed  Google Scholar 

  • Lemoli RM, Catani L, Talarico S, Loggi E, Gramenzi A, Baccarani U, et al. 2006. Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells 24: 2817–2825.

    Article  CAS  PubMed  Google Scholar 

  • Li HC, Stoicov C, Rogers AB, Houghton J, 2006. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J Gastroenterol 12: 363–371.

    PubMed  Google Scholar 

  • Liu C, Chen Z, Chen Z, Zhang T, Lu Y, 2006. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8: 716–724.

    Article  CAS  PubMed  Google Scholar 

  • Long MA, Corbel SY, Rossi FM, 2005. Circulating myogenic progenitors and muscle repair. Semin Cell Dev Biol 16: 632–640.

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697–705.

    Article  CAS  PubMed  Google Scholar 

  • Martin GR, 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634–7638.

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Zsebo K, Hogan BL, 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841–847.

    Article  CAS  PubMed  Google Scholar 

  • McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA, 2002. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99: 1341–1346.

    Article  CAS  PubMed  Google Scholar 

  • McLaren A, 1992. Development of primordial germ cells in the mouse. Andrologia 24: 243–247.

    Article  CAS  PubMed  Google Scholar 

  • McLaren A, 2003. Primordial germ cells in the mouse. Dev Biol 262: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • McLaren A, Lawson KA, 2005. How is the mouse germ-cell lineage established? Differentiation 73: 435–437.

    Article  CAS  PubMed  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR, 2000. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  • Mieno S, Ramlawi B, Boodhwani M, Clements RT, Minamimura K, Maki T, et al. 2006. Role of stromal-derived factor-1 alpha in the induction of circulating CD34+CXCR4+ progenitor cells after cardiac surgery. Circulation 114: I186–192.

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. 2004. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664–668.

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. 2006. Derivation of male germ cells from bone marrow stem cells. Lab Invest 86: 654–663.

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH, Stumpff J, Su TT, 2004. Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14: R35–45.

    PubMed  Google Scholar 

  • Orkin SH, Zon LI, 2002. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 3: 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. 2001. Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705.

    Article  CAS  PubMed  Google Scholar 

  • Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM, 2005. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 279: 336–344.

    Article  CAS  PubMed  Google Scholar 

  • Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ, 2004. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662–1668.

    Article  CAS  PubMed  Google Scholar 

  • Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, et al. 2003. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93: e51–62.

    Article  PubMed  CAS  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. 1999. Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  • Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. 2002. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3: 687–694.

    Article  CAS  PubMed  Google Scholar 

  • Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. 2004. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114: 438–446.

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al. 2000. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106: 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ, 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J, 2004. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 18: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, et al. 2003. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21: 363–371.

    Article  CAS  PubMed  Google Scholar 

  • Resnick JL, Bixler LS, Cheng L, Donovan PJ, 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359: 550–551.

    Article  CAS  PubMed  Google Scholar 

  • Resnick JL, Ortiz M, Keller JR, Donovan PJ, 1998. Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol Reprod 59: 1224–1229.

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL, 2001. Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Rideout WMr, Eggan K, Jaenisch R, 2001. Nuclear cloning and epigenetic reprogramming of the genome. Science 293: 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  • Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, et al. 2003. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198: 1391–1402.

    Article  CAS  PubMed  Google Scholar 

  • Sell S, 2004. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51: 1–28.

    Article  PubMed  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95: 13726–13731.

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, et al. 1998. Evidence for circulating bone marrow-derived endothelial cells. Blood 92: 362–367.

    CAS  PubMed  Google Scholar 

  • Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. 2001. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779.

    Article  CAS  PubMed  Google Scholar 

  • Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. 2004. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110: 1847–1854.

    Article  CAS  PubMed  Google Scholar 

  • Song YS, Ryu YH, Choi SR, Kim JC, 2005. The involvement of adult stem cells originated from bone marrow in the pathogenesis of pterygia. Yonsei Med J 46: 687–692.

    Article  PubMed  Google Scholar 

  • Tacchini L, Matteucci E, De Ponti C, Desiderio MA, 2003. Hepatocyte growth factor signaling regulates transactivation of genes belonging to the plasminogen activation system via hypoxia inducible factor-1. Exp Cell Res 290: 391–401.

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al. 1998. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393: 591–594.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. 1999. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438.

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski AK, 1959. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184: 1286–1287.

    Article  CAS  PubMed  Google Scholar 

  • Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C, 2005. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67: 1772–1784.

    Article  PubMed  Google Scholar 

  • Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, et al. 2007. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25: 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, et al. 2003. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21: 598–609.

    Article  PubMed  Google Scholar 

  • Urbich C, Dimmeler S, 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95: 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C, 2005. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19: 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  • Virchow R, 1855. Editorial Archive fuer pathologische Anatomie und Physiologie fuer klinische Medizin. 8: 23–54.

  • Wagers A J, Sherwood RI, Christensen JL, Weissman IL, 2002. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297: 2256–2259.

    Article  CAS  PubMed  Google Scholar 

  • Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, et al. 2004. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110: 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Mannam AP, Wu J, Kirbis S, Shie JL, Chen C, et al. 2003. Hypoxia induces myocyte-dependent COX-2 regulation in endothelial cells: role of VEGF. Am J Physiol Heart Circ Physiol 285: H2420–2429.

    CAS  PubMed  Google Scholar 

  • Wylie C, 1999. Germ cells. Cell 96: 165–174

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Vutskits L, Pepper MS, Kiss JZ, 2003. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 163: 1375–1384.

    Article  CAS  PubMed  Google Scholar 

  • Zwaka TP, Thomson JA, 2005. A germ cell origin of embryonic stem cells? Development 132: 227–233

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M.Z., Zuba-Surma, E.K., Machalinski, B. et al. Bone-marrow-derived stem cells — our key to longevity?. J Appl Genet 48, 307–319 (2007). https://doi.org/10.1007/BF03195227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195227

Keywords

Navigation