Advertisement

Mammal Research

, Volume 53, Issue 4, pp 289–332 | Cite as

Evolutionary and climatic factors affecting tooth size in the red foxVulpes vulpes in the Holarctic

  • Elwira Szuma
Article

Abstract

Research into the geographical pattern of tooth size in the red fox,Vulpes vulpes (Linnaeus, 1758) in the Holarctic was conducted on a sample of 3806 skulls belonging to 41 fox populations. The Nearctic was represented by 948 specimens (249 females, 359 males, 340 specimens of unknown sex) belonging to 13 populations, whereas the Palearctic was represented by 2858 red foxes (1034 females, 1256 males, 568 specimens of unknown sex) from 32 populations. In the Nearctic, the largest foxes live on Kodiak Island (V. v. harrimani) and the Kenai Peninsula (V. v. kenaiensis), while the smallest ones live in California (V. v. necator) and Georgia (V. v. fulvus). In the Palearctic, the largest foxes come from the Far East (V. v. jakutensis, V. v. beringiana, V. v. tobolica), while the smallest are from the southern borders of the Eurasian range (V. v. pusilla, V. v. barbara, V. v. arabica). In both the Palearctic and Nearctic, tooth size in the fox varies depending on the geo-climatic factors. The fox’s tooth size confirms the general basis of Bergmann’s rule. In the Palearctic, specimens with larger teeth occur in cooler habitats with greater seasonality. These are first and foremost Northern and Far Eastern populations. In the Nearctic, tooth size in red foxes depends on the temperature and humidity of their habitat. Competition within the species and between species has important impact on the variation and dimorphism of tooth size in the red fox. Both in the Nearctic and Palearctic, red foxes from regions of sympatric co-occurrence with other closely relatedVulpes species, are more sexually dimorphic in terms of tooth size than red foxes from allopatric regions. Analysis of morphological distance on the basis of the size of dental characteristics shows, that in the Palearctic, the foxes from India (V. v. pusilla), while in the Nearctic, the population from Kodiak Island (V. v. harrimani) are most distant from the remaining populations. Geographic barriers such as the Bering Strait, Parry Channel, Mackenzie River, Kolyma and Omolon River systems have had a critical impact on red fox evolution. The most likely place for the evolution and diversification of the phyletic lineVulpes vulpes seems to be the Middle East region.

Key words

red fox tooth size skull length geographic variation climatic factors ecological factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott R. J., Smith L. C., Milne R. I., Crawford R. M. M., Wolf K. and Balfour J. 2000. Molecular analysis of plant migration and refugia in the Arctic. Science 289: 1343–1346.PubMedCrossRefGoogle Scholar
  2. Anderson E. 1970. Quternary evolution of the genusMartes (Carnivora, Mustelidae). Acta Zoologica Fennica 130: 1–132.Google Scholar
  3. Ansorge H. 1994. Intrapopular skull variability in the red fox,Vulpes vulpes (Mammalia: Carnivora: Canidae). Zoologische Abhandlungen Statliches Museum für Tierkunden Dresden 48: 103–123.Google Scholar
  4. Aristov A. A. and Baryshnikov G. F. 2001. Mlekopitayushchie fauny Rossii i sopredel’nykh territorii. Khishchnye i lastonogie. Zoologicheskii Institut RAN, Sankt-Peterburg 169: 1–560. [In Russian]Google Scholar
  5. Ashton K. L., Tracy M. C. and de Queiroz A. 2000. Is Bergmann rule valid for mammals? The American Naturalist 156: 390–415.Google Scholar
  6. Aubry K. B. 1984. The recent history and present distribution of the red fox in Washington. Northwest Science 58: 69–79.Google Scholar
  7. Best T. L. 1981. Relationship between ecographic and morphologic variation in the agilo kangaroo rat (Dipodomys agilis) in Baja California, Mexico. Bulletin of the Southern California Academy of Sciences 80: 60–69.Google Scholar
  8. Bonis L. de, Peigné S., Likius A., Mackaye H. T., Vignaud P. and Brunet M. 2007. The oldest African fox (Vulpes riffautae n. sp., Canidae, Carnivora) recovered in late Miocene deposits of the Djurab desert, Chad. Naturwissenschaften 94: 575–580.PubMedCrossRefGoogle Scholar
  9. Brown W. L. and Wilson E. O. 1956. Character displacement. Systematic Zoology 7: 49–64.CrossRefGoogle Scholar
  10. Brunhoff C., Galbreath K. E., Fedorov V., Cook J. A. and Jaarola M. 2003. Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quaternary biogeography of high latitudes. Molecular Ecology 12: 957–968.PubMedCrossRefGoogle Scholar
  11. Butler P. M. 1985. Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. [In: Evolutionary relationships among rodents P.Luckett, ed]. Plenum Publishing Corporation, New York: 381–401.CrossRefGoogle Scholar
  12. Carraway L. N. and Verts B. J. 1994. Relationship of mandibular morphology to relative bite force in someSorex from western North America. Special Publication Carnegie Museum of Natural History 18: 201–210.Google Scholar
  13. Cavallini P. 1995. Variation in body size of the red fox. Annales Zoologici Fennici 32: 421–427.Google Scholar
  14. Churcher C. S. 1960. Cranial variation in the North American red fox. Journal of Mammalogy 41: 349–360.CrossRefGoogle Scholar
  15. Degerböl M. 1933. Danmarks pattedyr i fortiden i sammenligning med recente former. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kiøbenhavn 96: 353–641. [In Danish]Google Scholar
  16. Davis S. 1977. Size variation of the fox,Vulpes vulpes in the palearctic region today, and in Israel during late Quaternary. Journal of Zoology, London 182: 343–351.CrossRefGoogle Scholar
  17. Dayan T. and Simberloff D. 1994. Character displacement, sexual dimorphism, and morphological variation among British and Irish mustelids. Ecology 75: 1063–1073.CrossRefGoogle Scholar
  18. Dayan T. and Simberloff D. 1998. Size pattern among competitors: ecological displacement and character release in mammals, with special reference to island populations. Mammal Review 28: 99–124.CrossRefGoogle Scholar
  19. Dayan T., Simberloff D., Tchernov E. and Yom-Tov Y. 1989a. Inter- and intraspecific character displacement in mustelids. Ecology 70: 1526–1539.CrossRefGoogle Scholar
  20. Dayan T., Simberloff D., Tchernov E. and Yom-Tov Y. 1990. Feline canines: community-wide character displacement among the small cats of Israel. The American Naturalist 136: 39–60.CrossRefGoogle Scholar
  21. Dayan T., Simberloff D., Tchernov E. and Yom-Tov Y. 1992a. Canine carnassials: character displacement in the wolves, jackals and foxes of Israel. Biological Journal of the Linnean Society 45: 315–331.CrossRefGoogle Scholar
  22. Dayan T., Tchernov E., Simberloff D. and Yom-Tov Y. 1992b. Tooth size: function and coevolution in carnivore guilds. [In: Structure, function and evolution of teeth. P. Smith and E. Tchernov, eds]. Freund Publishing House Ltd., London and Tel Aviv: 215–222.Google Scholar
  23. Dayan T., Tchernov E., Yom-Tov Y. and Simberloff D. 1989b. Ecological character displacement in Saharo-Arabian Vulpes: outfoxing Bergmann’s rule. Oikos 55: 263–272.CrossRefGoogle Scholar
  24. Dayan T., Wool D. and Simberloff D. 2002. Variation and covariation of skulls and teeth: modern carnivores and interpretation of fossil mammals. Paleobiology 28: 508–526.CrossRefGoogle Scholar
  25. Douma-Petridou E. and Ondrias J. C. 1980. Contribution to the knowledge ofVulpes vulpes L. (Mammalia, Carnivora) from Achaia, Peloponnesus, Greece, with a description of a new subspecies. Biologia Gallo Hellenica 9: 207–217.Google Scholar
  26. Ebenman B. 1986. Sexual size dimorphism in the great titParus major in relation to the number coexisting congeners. Oikos 47: 355–359.CrossRefGoogle Scholar
  27. Ebersbach H. and Stubbe M. 1994. Development of body weight and reproduction in some marten-like mammals. Beiträge zur Jagd- und Wildforschung 19: 197–212.Google Scholar
  28. Ehrich D., Fedorov V. B., Stenseth N. C., Krebs J. C. and Kenney A. 2000. Phylogeography of mitochondrial DNA (mtDNA) diversity in North American collared lemmings (Dicrostonyx groenlandicus). Molecular Ecology 9: 329–337.PubMedCrossRefGoogle Scholar
  29. Fedorov V. B., Fredga K. and Jarrell G. H. 1999a. Mitochondrial DNA variation and the evolutionary history of chromosome races of collared lemmings (Dicrostonyx) in the Eurasian Arctic. Journal of Evolutionary Biology 12: 134–145.CrossRefGoogle Scholar
  30. Fedorov V. B., Goropashnaya A., Jaarola M. and Cook J. A. 2003. Phylogeography of lemmings (Lemmus): no evidence for postglacial colonization of Arcitc from Beringian refugium. Molecular Ecology 12: 725–732.PubMedCrossRefGoogle Scholar
  31. Fedorov V. B., Goropashnaya A., Jarrell G. H. and Fredga K. 1999b. Phylogeographic structure and mitochondrial DNA variation in true lemmings (Lemmus) from the Eurasian Arctic. Biological Journal of the Linnean Society 66: 357–371.CrossRefGoogle Scholar
  32. Fedorov V. B. and Stenseth N. C. 2002. Multiple glacial refugia in the North American Arctic: inference from phylogeography of the collared lemming (Dicrostonyx groenlandicus). Proceedings of the Royal Society of London B 269: 2071–2077.CrossRefGoogle Scholar
  33. Fisher D. O. and Dickman C. R. 1993. Diets of insectivorous marsupials in arid Australia: selection for prey type, size or hardness? Journal of Arid Environments 25: 397–410.CrossRefGoogle Scholar
  34. Frafjord K. and Stevy I. 1998. The red fox in Norway: morphological adaptation or random variation in size? Zeitschrift für Säugetierkunde 63: 16–25.Google Scholar
  35. Frenzel B. 1968. The Pleistocene vegetation of northern Eurasia. Science 161: 637–649.PubMedCrossRefGoogle Scholar
  36. Futuyama D. J. 1998. Evolutionary biology. 3rd edition. Sinauer, Sunderland, Mass: 1–828.Google Scholar
  37. Galbreath K. E. and Cook J. 2004. Genetic consequences of Pleistocene glaciations for the tundra vole (Microtus oeconomus) in Beringia. Molecular Ecology 13: 135–148.PubMedCrossRefGoogle Scholar
  38. Geffen E., Mercure A., Girman D. J., Macdonald D. W. and Wayne R. K. 1992. Phylogenetic relationships of fox-like canids: mitochondrial DNA restriction fragment, site and cytochromeb sequence analyses. Journal of Zoology, London 228: 27–39.CrossRefGoogle Scholar
  39. Geist V. 1987. Bergmann’s rule is invalid. Canadian Journal of Zoology 65: 1035–1038.CrossRefGoogle Scholar
  40. Gingerich P. D. 1976. Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Papers on Paleontology, Museum of Paleontology, University of Michigan 15: 1–145.Google Scholar
  41. Gingerich P. D. 1977. Patterns of evolution in the mammalian fossil record. [In: Patterns of evolution as illustrated by the fossil record. A. Hallam, ed]. Elsevier Scientific, Amsterdam: 469–500.CrossRefGoogle Scholar
  42. Gingerich P. D. and Simons E. L. 1977. Systematics, phylogeny, and evolution of early Eocene Adapidae (Mammalia, Primates) in North America. Contributions from the Museum of Paleontology. The University of Michigan 24: 245–279.Google Scholar
  43. Gingerich P. D. and Winkler D. A. 1979. Patterns of variation and correlation in the dentition of the red fox,Vulpes vulpes. Journal of Mammalogy 60: 691–704.CrossRefGoogle Scholar
  44. Gittleman J. L. and Van Valkenburgh B. 1997. Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioural ecology. Journal of Zoology, London 242: 97–117.CrossRefGoogle Scholar
  45. Gortázar C., Travaini A. and Delibes M. 2000. Habitat-related microgeographic body size variation in two Mediterranean populations of red fox (Vulpes vulpes). Journal of Zoology, London 250: 335–338.CrossRefGoogle Scholar
  46. Goszczyński J. 1995. [The fox]. Monografia przyrodniczo-łowiecka. Oikos, Warszawa: 1–137. [In Polish]Google Scholar
  47. Gould S. J. 1975. On the scaling of tooth size in mammals. American Zoologist 15: 351–362.CrossRefGoogle Scholar
  48. Hall E. and Kelson K. 1959. The Mammals of North America. The Ronald Press Company, New York: 1–1083.Google Scholar
  49. Haltenorth T. and Roth H. H. 1968. Short review of the biology and ecology of the red foxCanis (Vulpes)vulpes Linnaeus 1758. Säugetierkundliche Mitteilungen 16: 339–352.Google Scholar
  50. Harrison D. L. and Bates P. J. J. 1991. The mammals of Arabia. Harrison Zoological Museum Publication, Severoaks, Kent: 1–354.Google Scholar
  51. Hell P., Paule L., Sevčenko L. S., Danko S., Panigaj L. and Vítaz V. 1989. Craniometrical investigation of the red fox (Vulpes vulpes) from the Slovak Carpathians and adjacent lowlands. Folia Zoologica 38: 139–155.Google Scholar
  52. Hewitt G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.CrossRefGoogle Scholar
  53. Holmes T. and Powell R. A. 1994. Morphology, ecology and the evolution of sexual dimorphism in North American Martes. [In: Martens, sables, and fishers: biology and conservation. S. W. Buskirk, A. S. Harestad, M. G. Raphael and R. A. Powell, eds]. Comstock Publishing Associates, Ithaca, New York, USA: 72–84.Google Scholar
  54. Hopkins D. M. (ed) 1967. The Bering Land Bridge. Stanford University Press, California: 1–495.Google Scholar
  55. Huson L. W. and Page R. J. C. 1979. A comparison of fox skulls from Wales and South-East England. Journal of Zoology, London 187: 465–470.CrossRefGoogle Scholar
  56. Huson L. W. and Page R. J. C. 1980. Multivariate geographical variation of the red fox (Vulpes vulpes) in Wales. Journal of Zoology, London 191: 453–459.CrossRefGoogle Scholar
  57. James F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51: 365–390.CrossRefGoogle Scholar
  58. Jiménez J. E., Yáńez J. L., Tabilo E. L. and Jaksić F. M. 1995. Body size of Chilean foxes: a new pattern in light of new data. Acta Theriologica 40: 321–326.Google Scholar
  59. Johnson D. D. P. and Macdonald D. W. 2001. Why are group-living badgers (Meles meles) sexually dimorphic? Journal of Zoology, London 255: 199–204.CrossRefGoogle Scholar
  60. Kaleta T. 1998. Wild dogs and hyaenas. Wiedza Powszechna, Warsaw: 1–219. [In Polish]Google Scholar
  61. Kamler J. F. and Ballard W. B. 2002. A review of native and nonnative red foxes in North America. Wildlife Society Bulletin 30: 370–379.Google Scholar
  62. Kay R. F. 1975. The functional adaptations of primate molar teeth. American Journal of Physical Anthropology 43: 195–216.PubMedCrossRefGoogle Scholar
  63. Kennedy M. L. and Lindsay S. L. 1984. Morphological variation in the raccoon,Procyon lotor, and its relationship to genic and environmental variation. Journal of Mammalogy 65: 195–205.CrossRefGoogle Scholar
  64. Kingdon J. 1991. Arabian Mammals. A Natural History. Academic Press, Harcourt Brace Jovanovich, London: 1–279.Google Scholar
  65. Klein R. G. 1986. Carnivore size and Quternary climatic change in southern Africa. Quaternary Research 26: 153–170.CrossRefGoogle Scholar
  66. Klein R. G. and Scott K. 1989. Glacial/interglacial size variation in fossil spotted hyaenas (Crocuta crocuta) from Britain. Quaternary Research 32: 88–95.CrossRefGoogle Scholar
  67. Kolb H. H. 1978. Variation in the size of foxes in Scotland. Biological Journal of the Linnean Society 10: 291–304.CrossRefGoogle Scholar
  68. Kolb H. H. and Hewson R. 1974. The body size in the red fox (Vulpes vulpes) in Scotland. Journal of Zoology, London 173: 253–255.CrossRefGoogle Scholar
  69. Kowalczyk R., Jędrzejewska B. and Zalewski A. 2003. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other Palearctic populations. Journal of Biogeography 30: 463–472.CrossRefGoogle Scholar
  70. Krasińska M., Szuma E., Kobryńczuk F. and Szara T. 2008. Morphometric variation of the skull during postnatal development in the Lowland European bison,Bison bonasus bonasus. Acta Theriologica 53: 193–216.Google Scholar
  71. Kurtén B. 1967. Some quantitative approaches to dental microevolution. Journal of Dental Research 40: 817–828.CrossRefGoogle Scholar
  72. Kurtén B. and Anderson E. 1980. Pleistocene mammals of North America. Columbia University Press, New York: 1–442.Google Scholar
  73. Larivière S. and Pasitschniak-Arts M. 1996.Vulpes vulpes. Mammalian Species 537: 1–11.CrossRefGoogle Scholar
  74. Legendre S. and Roth C. 1988. Correlation of carnassial tooth size and body weight in recent carnivores (Mammalia). Historical Biology 1: 85–98.CrossRefGoogle Scholar
  75. Lidicker W. Z. Jr 1991. Introduced mammals in California. [In: Biogeography of Mediterranean Invasions. R. H. Groves and F. di Castri, eds]. Cambridge University Press, Cambridge: 263–271.CrossRefGoogle Scholar
  76. Lindsted S. L. and Boyce M. C. 1985. Seasonality, body size and survival time in mammals. The American Naturalist 125: 873–878.CrossRefGoogle Scholar
  77. Linhart S. B. 1968. Dentition and pelage in the juvenile red fox (Vulpes vulpes). Journal of Mammalogy 49: 526–528.PubMedCrossRefGoogle Scholar
  78. Lloyd H. G. 1981. The red fox. B. T. Batsford Ltd, London: 1–285.Google Scholar
  79. Lüps P. and Roper T. J. 1988. Tooth size in the European badger (Meles meles) with special refernce to sexual dimorphism, diet and intraspecific aggression. Acta Theriologica 33: 21–33.Google Scholar
  80. MacArthur R. H. and Wilson E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey: 1–203.Google Scholar
  81. Macdonald D. W., Courtenay O., Forbes S. and Mathews F. 1999. The red fox (Vulpes vulpes) in Saudi Arabia: loose-knit groupings in the absence of territoriality. Journal of Zoology, London 249: 383–391.CrossRefGoogle Scholar
  82. MacNab B. K. 1971. On the ecological significance of Bergmann’s rule. Ecology 52: 845–854.CrossRefGoogle Scholar
  83. Meiri S. and Dayan T. 2003. On the validity of Bergmann’s rule. Journal of Biogeography 30: 331–351.CrossRefGoogle Scholar
  84. Meiri S., Dayan T. and Simberloff D. 2004. Carnivores, biases and Bergmann’s rule. Biological Journal of the Linnean Society 81: 579–588.CrossRefGoogle Scholar
  85. Meiri S., Dayan T. and Simberloff D. 2005. Variability and sexual size dimorphism in Carnivores: testing the niche variation hypothesis. Ecology 86: 1432–1440.CrossRefGoogle Scholar
  86. Mendelssohn H., Yom-Tov Y., Ilany G. and Meninger D. 1987. On the occurrence of Blanford’s foxVulpes cana Blanford 1877, in Israel and Sinai. Mammalia 51: 459–462.Google Scholar
  87. Merriam C. H. 1900. Preliminary revision of the North American red foxes. Process Washington Academy of Sciences 2: 661–676.Google Scholar
  88. Mikesic D. G. and LaRue C. T. 2003. Recent status and distribution of red foxes (Vulpes vulpes) in northeastern Arizona and southeastern Utah. The Southwestern Naturalist 48: 624–634.CrossRefGoogle Scholar
  89. Mugaas J. N. and Seidensticker J. 1993. Geographic variation of lean body mass and a model of its effect on the capacity of the raccoon to fatten and fast. Bulletin of the Florida Museum of Natural History Biological Sciences 36: 85–107.Google Scholar
  90. Murphy E. C. 1985. Bergmann’s rule, seasonality, and geographic variation in body size of house sparrows. Evolution 39: 1327–1334.CrossRefGoogle Scholar
  91. Patterson B. D. 1983. Grasshopper mandibles and the niche variation hypothesis. Evolution 37: 375–388.CrossRefGoogle Scholar
  92. Pengilly D. 1984. Developmental versus functional explanations for patterns of variability and correlation in the dentitions of foxes. Journal of Mammalogy 65: 34–43.CrossRefGoogle Scholar
  93. Plavcan J. M. 2004. Sexual selection, measures of sexual selection and sexual dimorphism in primates. [In: Sexual selection in primates: new and comparative perspectives. P. M. Kappeler and C. D. Van Schaik, eds]. Cambridge University Press, Cambridge: 230–252.CrossRefGoogle Scholar
  94. Polly P. D. 1998. Variability in mammalian dentitions: size-related bias in the coefficient of variation. Biological Journal of the Linnean Society 64: 83–99.CrossRefGoogle Scholar
  95. Polly P. D. 2003a. Paleophylogeography ofSorex araneus (Insectivora, Soricidae): molar shape as a morphological marker for fossil shrews. Mammalia 68: 233–243.Google Scholar
  96. Polly P. D. 2003b. Paleophylogeography: the tempo of geographic deifferentiation in marmots (Marmota). Journal of Mammalogy 84: 369–384.CrossRefGoogle Scholar
  97. Polly P. D. 2005. Development and phenotypic correlations: the evolution of tooth shape inSorex araneus. Evolution & Development 7: 24–41.CrossRefGoogle Scholar
  98. Pucek Z. 1965. Seasonal and age changes in the weight of internal organs of shrews. Acta Theriologica 10: 369–438.Google Scholar
  99. Pulliainen E., Rantanen A. V. and Salo L. J. 1972. On the carnassial tooth cusps in recent red foxes (Vulpes vulpes L.) in Finland and Denmark. Scandinavian Journal of Dental Research 80: 322–326.PubMedGoogle Scholar
  100. Raia P. and Meiri S. 2006. The Island rule in large mammals: paleontology meets ecology. Evolution 60: 1731–1742.PubMedCrossRefGoogle Scholar
  101. Ralls K. and Harvey P. H. 1985. Geographic variation in size and sexual dimorphism of North American weasels. Biological Journal of the Linnean Society 25: 119–167.CrossRefGoogle Scholar
  102. Rausch R. L. 1963. Geographic variation in size in North American brown bears, Ursus arctos L., as indicated by condylobasal length. Canadian Journal of Zoology 41: 33–45.CrossRefGoogle Scholar
  103. Ritke M. E. and Kennedy M. L. 1988. Intraspecific morphologic variation in the raccoon (Procyon lotor) and its relationship to selected environmental variables. The Southwestern Naturalist 33: 295–314.CrossRefGoogle Scholar
  104. Rosenzweig M. L. 1968. The strategy of body size in mammalian carnivores. The American Midland Naturalist 80: 299–315.CrossRefGoogle Scholar
  105. Sage R. D. and Wolf J. O. 1986. Pleistocene glaciations, fluctuating ranges, and low genetic variability in a large mammal (Ovis dalli). Evolution 40: 1092–1093.CrossRefGoogle Scholar
  106. Samuel D. E. and Nelson B. B. 1982. Foxes. [In: Wild mammals of North America: biology, management, and economics. J. L. Chapman and G. A. Feldhamer, eds]. The John Hopkins University Press, Baltimore, Maryland: 475–490.Google Scholar
  107. Savage R. J. G. and Russell D. E. 1983. Mammalian paleofaunas of the world. Addison — Wesley Publishing Co., London: xvii-432.Google Scholar
  108. Shevchenko L. S. 1987. [Craniometric indices in red fox of European part USSR]. Vestnik Zoologii 1987: 63–71. [In Russian]Google Scholar
  109. Simms D. A. 1979. North American weasels: resource utilization and distribution. Canadian Journal of Zoology 57: 504–520.CrossRefGoogle Scholar
  110. Simonsen V., Pertoldi C., Madsen A. B. and Loeschecke V. 2003. Genetic differentiation of foxes (Vulpes vulpes) analysed by means of craniometry and isozymes. Journal for Nature Conservation 11: 109–116.CrossRefGoogle Scholar
  111. Snell R. R. and Cunnison K. M. 1983. Relationship of geographic variation in the skull of Microtus pennsylvanicus to climate. Canadian Journal of Zoology 61: 1232–1241.CrossRefGoogle Scholar
  112. Statistica.PL 1997. STATISTICA PL dla Windows. StatSoft version 6.0 Polska Sp. z o.o.Google Scholar
  113. Storm G. L., Andrews R. D., Phillips R. L., Bishop R. A., Siniff D. B. and Tester J. R. 1976. Morphology, reproduction, dispersal, and mortality of Midwestern red fox populations. Wildlife Monographs 49: 1–82.Google Scholar
  114. Suchentrunk F. 1994. Non-metrical polymorphism of the first lower premolar (P3) in Austrian brown hares (Lepus europaeus): a study on regional differentiation. Journal of Zoology, London 232: 79–91.CrossRefGoogle Scholar
  115. Suchentrunk F. 2000. Epigenetic dental asymmetry of Israeli hares: developmental stability along an environmental gradient. Israel Journal of Zoology 46: 103–118.CrossRefGoogle Scholar
  116. Suchentrunk F. 2004. Phylogenetic relationships between Indian and Burmese hares (Lepus nigricollis and L. peugensis) inferred from epigenetic dental characters. Mammalian Biology 69: 28–45.CrossRefGoogle Scholar
  117. Suchentrunk F., Alkon P. U., Wiling R. and Yom-Tov Y. 2000. Epigenetic dental variability of Israeli hares (Lepus sp.): ecogenetic or phylogenetic causation? Journal of Zoology, London 252: 503–515.CrossRefGoogle Scholar
  118. Suchentrunk F. and Flux J. E. C. 1996. Minor dental traits in East African cape hares and savanna hares (Lepus capensis andLepus victoriae): A study of intra- and interspecific variability. Journal of Zoology, London 238: 495–511.CrossRefGoogle Scholar
  119. Szuma E. 1999. Dental abnormalities in the red foxVulpes vulpes from Poland. Acta Theriologica 44: 393–412.Google Scholar
  120. Szuma E. 2000. Variation and correlation patterns in the dentition of the red fox from Poland. Annales Zoologici Fennici 37: 113–127.Google Scholar
  121. Szuma E. 2003. Microevolutionary trends in the dentition of the Red fox (Vulpes vulpes). Journal of Zoological Systematics and Evolutionary Research 41: 47–56.CrossRefGoogle Scholar
  122. Szuma E. 2004. Evolutionary implications of morphological variations in the lower carnassial of Red FoxVulpes vulpes. Acta Theriologica 49: 433–447.Google Scholar
  123. Szuma E. 2007. Geography of dental polymorphism in the red foxVulpes vulpes and its evolutionary implications. Biological Journal of the Linnean Society 90: 61–84.CrossRefGoogle Scholar
  124. Szuma E. 2008a. Geography of sexual dimorphism in the tooth size of the red foxVulpes vulpes (Mammalia, Carnivora). Journal of Zoological Systematic and Evolutionary Research 46: 73–81.Google Scholar
  125. Szuma E. 2008b. Geographic variation of tooth and skull size in the arctic foxVulpes (Alopex)lagopus. Annales Zoologici Fennici 45: 185–199.CrossRefGoogle Scholar
  126. Tedford R. H., Taylor B. E. and Wang X. 1995. Phylogeny of the Caninae (Carnivora: Canidae): the living taxa. American Museum Novitates 3146: 1–37.Google Scholar
  127. Thoréén S., Lindenfors P. and Kappeler P. M. 2006. Phylogenetic analyses of dimorphism in primates: evidence for stronger selection on canine size than on body size. American Journal of Physical Anthropology 130: 50–59.CrossRefGoogle Scholar
  128. Travaini A. and Delibes M. 1995. Weight and external measurements of red foxes (Vulpes vulpes) from SW Spain. Zeitschrift für Säugetierkunde 60: 121–123.Google Scholar
  129. Van Gelder R. G. 1968. The genusConepatus (Mammalia, Mustelidae): variation within a population. American Museum Novitates 2322: 1–37.Google Scholar
  130. Van Valen L. M. 1965. Morphological variation and the width of the ecological niche. The American Naturalist 99: 377–390.CrossRefGoogle Scholar
  131. Van Valkenburgh B. 1989. Carnivore dental adaptations and diet: a study of trophic diversity within guilds. [In: Carnivore behavior, ecology, and evolution. J. L. Gittleman, ed]. Chapmann and Hall, London, Cornell University Press, New York: 410–435.CrossRefGoogle Scholar
  132. Van Valkenburgh B. 1990. Skeletal and dental predictors of body mass in carnivores. [In: Body size in mammalian paleobiology: Estimation and biological implications. J. Damuth and B. J. MacFadden, eds]. Cambridge University Press, Cambridge: 181–205.Google Scholar
  133. Voigt D. R. 1987. Red fox. [In: Wild furbearer management and conservation in North America. M. Nowak, J. A. Baker, M. E. Obbard and B. Malloch, eds]. Ontario Ministry of Natural Resources, Ontario: 379–392.Google Scholar
  134. Waltari E., Demboski J. R., Klein D. R. and Cook J. A. 2004. A molecular perspective on the historical biogeography of the northern high latitudes. Journal of Mammalogy 85: 591–600.CrossRefGoogle Scholar
  135. Wang X., Tedford R. H., Van Valkenburgh B. and Wayne R. K. 2004. Ancestry history, molecular systematic, and evolutionary ecology of Canidae. [In: Biology and conservation of wild canids. D. W. Macdonald and C. Sillero-Zubiri, eds]. Oxford University Press, Oxford, New York: 39–54.CrossRefGoogle Scholar
  136. Wenink P. W., Baker A. J., Rosner H.-U. and Tilanus M. G. J. 1996. Global mitochondrial DNA phylogeography of holarctic breeding dunlins (Calidris alpine). Evolution 50: 318–330.CrossRefGoogle Scholar
  137. Wilson D. E. and Ruff S. (eds). 1999. Smithsonian Book of North American Mammals. Smithsonian Institution Press, Washington: 1–750.Google Scholar
  138. Whittaker R. 1998. Island biogeography — ecology, evolution and conservation. Oxford University Press, Oxford: 1–285.Google Scholar
  139. Wolsan M. 1985. Variation and asymmetry in the dentition of the pine and stone martens (Martes martes and M. foina) from Poland. Acta Theriologica 30: 79–114.Google Scholar
  140. Wolsan M. 1989. Dental polymorphism in the genus Martes (Carnivora: Mustelidae) and its evolutionary significance. Acta Theriologica 34: 545–593.Google Scholar
  141. WorldClimate. 1996–2004. Buttle and Tuttle Ltd.: www.worldclimate.comGoogle Scholar
  142. Yablokov A. V. 1974. Variability of mammals. Amerind Publishing Co., New Delhi: 1–350.Google Scholar
  143. Yom-Tov Y. and Geffen E. 2006. Geographic variation in body size: the effect ambient temperature and precipitation. Oecologia 148: 213–218.PubMedCrossRefGoogle Scholar
  144. Yudin V. G. 1986. Lisitsa Dal’nego Vostoka SSSR. Vladivostok: Akademiya Nauk SSSR. Dal’nevostochnyi Nauchnyi Tsentr Biologo-Pochvennoyi Institut, Vladivostok: 1–284. [In Russian]Google Scholar
  145. Zeveloff S. I. and Boyce M. S. 1988. Body size patterns in North American mammal faunas. [In: Evolution of life histories of mammals, theory and pattern. M. S. Boyce, ed]. Yale University Press, New Haven, CT: 123–146.Google Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2008

Authors and Affiliations

  • Elwira Szuma
    • 1
  1. 1.Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland

Personalised recommendations