Journal of Applied Genetics

, Volume 47, Issue 4, pp 287–302 | Cite as

Analysis of the wheat endosperm transcriptome

  • Debbie L. Laudencia-Chingcuanco
  • Boryana S. Stamova
  • Gerard R. Lazo
  • Xiangqin Cui
  • Olin D. Anderson
Original Article


Among the cereals, wheat is the most widely grown geographically and is part of the staple diet in much of the world. Understanding how the cereal endosperm develops and functions will help generate better tools to manipulate grain qualities important to end-users. We used a genomics approach to identify and characterize genes that are expressed in the wheat endosperm. We analyzed the 17 949 publicly available wheat endosperm EST sequences to identify genes involved in the biological processes that occur within this tissue. Clustering and assembly of the ESTs resulted in the identification of 6 187 tentative unique genes, 2 358 of which formed contigs and 3 829 remained as singletons. A BLAST similarity search against the NCBI non-redundant sequence database revealed abundant messages for storage proteins, putative defense proteins, and proteins involved in starch and sucrose metabolism. The level of abundance of the putatively identified genes reflects the physiology of the developing endosperm. Half of the identified genes have unknown functions. Approximately 61% of the endosperm ESTs has been tentatively mapped in the hexaploid wheat genome. Using microarrays for global RNA profiling, we identified endosperm genes that are specifically up regulated in the developing grain.

Key words

endosperm EST mapping microarray transposon wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.CrossRefPubMedGoogle Scholar
  2. Anderson OD, Hsia CC, Adalsteins AE, Le J-L, Kasarda DD, 2001. Identification of several new classes of low-molecular-weight wheat gliadin-related proteins and genes. Theor Appl Genet 103: 307–315.CrossRefGoogle Scholar
  3. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. 2004. UniProt: the Universal Protein Knowledgebase. Nucleic Acids Res 32: D115–119.CrossRefPubMedGoogle Scholar
  4. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. 2005. The Universal Protein Resource (UniProt). Nucleic Acids Res 33: D154–159.CrossRefPubMedGoogle Scholar
  5. Bass HW, Webster C, O’Brian GR, Roberts JK, Boston RS, 1992. A maize ribosome-inactivating protein is controlled by the transcriptional activator Opaque-2. Plant Cell 4: 225–234.CrossRefPubMedGoogle Scholar
  6. Benjamini Y, Hochberg Y, 2000. On the adaptive control of the false discovery fate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25: 60–83.Google Scholar
  7. Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W, 2004. Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7: 732–736.CrossRefPubMedGoogle Scholar
  8. Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R, 2002. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48: 615–623.CrossRefPubMedGoogle Scholar
  9. Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P, 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104: 84–91.CrossRefPubMedGoogle Scholar
  10. Capparelli R, Borriello G, Giroux MJ, Amoroso MG, 2003. Puroindoline A-gene expression is involved in association of puroindolines to starch. Theor Appl Genet 107: 1463–1468.CrossRefPubMedGoogle Scholar
  11. Charnet P, Molle G, Marion D, Rousset M, Lullien-Pellerin V, 2003. Puroindolines form ion channels in biological membranes. Biophys J 84: 2416–2426.CrossRefPubMedGoogle Scholar
  12. Clarke B, Lambrecht M, Rhee SY, 2003. Arabidopsis genomic information for interpreting wheat EST sequences. Funct Integr Genomics 3: 33–38.PubMedGoogle Scholar
  13. Clarke BC, Hobbs M, Skylas D, Appels R, 2000. Genes active in developing wheat endosperm. Funct Integr Genomics 1: 44–55.CrossRefPubMedGoogle Scholar
  14. Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA, 2005. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6: 59–75.CrossRefPubMedGoogle Scholar
  15. Echenique V, Stamova B, Wolters P, Lazo G, Carollo L, Dubcovsky J, 2002. Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104: 840–844.CrossRefPubMedGoogle Scholar
  16. Evers T, Millar S, 2002. Cereal grain structure and development: some implications for quality. J Cereal Sci 36: 261–284.CrossRefGoogle Scholar
  17. Feng GH, Richardson M, Chen MS, Kramer KJ, Morgan TD, Reeck GR, 1996. Alpha-amylase inhibitors from wheat: amino acid sequences and patterns of inhibition of insect and human alpha-amylases. Insect Biochem Mol Biol 26: 419–426.CrossRefPubMedGoogle Scholar
  18. Franco OL, Rigden DJ, Melo FR, Bloch C Jr., Silva CP, Grossi de Sa MF, 2000. Activity of wheat alpha-amylase inhibitors towards bruchid alpha-amylases and structural explanation of observed specificities. Eur J Biochem 267: 2166–2173.CrossRefPubMedGoogle Scholar
  19. Franken J, Stephan U, Meyer HE, Konig W, 1994. Identification of alpha-amylase inhibitor as a major allergen of wheat flour. Int Arch Allergy Immunol 104: 171–174.CrossRefPubMedGoogle Scholar
  20. Gao J, Liu J, Li B, Li Z, 2001. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Mol Biol Report 19: 185–185.CrossRefGoogle Scholar
  21. Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P, 1994.Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25: 43–57.CrossRefPubMedGoogle Scholar
  22. Giroux MJ, Morris CF, 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95: 6262–6266.CrossRefPubMedGoogle Scholar
  23. Giroux MJ, Sripo T, Gerhardt S, Sherwood J, 2003. Puroindolines: their role in grain hardness and plant defence. Biotechnol Genet Eng Rev 20: 277–290.PubMedGoogle Scholar
  24. Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G, 2002. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor Appl Genet 104: 39–47.CrossRefPubMedGoogle Scholar
  25. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32: D258–261.CrossRefPubMedGoogle Scholar
  26. Hattori J, Ouellet T, Tinker NA, 2005. Wheat EST sequence assembly facilitates comparison of gene contents among plant species and discovery of novel genes. Genome 48: 197–206.PubMedGoogle Scholar
  27. Hogg AC, Sripo T, Beecher B, Martin JM, Giroux MJ, 2004. Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor Appl Genet 108: 1089–1097.CrossRefPubMedGoogle Scholar
  28. Johnson JC, Bhave M, 2004. Molecular characterisation of the protein disulphide isomerase genes of wheat. Plant Sci 167: 397–410CrossRefGoogle Scholar
  29. Kashkush K, Feldman M, Levy AA, 2003. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102–106.CrossRefPubMedGoogle Scholar
  30. Kulwal P, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK, 2005. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics 5: 254–259.CrossRefPubMedGoogle Scholar
  31. Kumar A, Bennetzen JL, 2000. Retrotransposons: central players in the structure, evolution and function of plant genomes. Trends Plant Sci 5: 509–510.CrossRefPubMedGoogle Scholar
  32. Lazo GR, Chao S, Hummel DD, Edwards H, Crossman CC, Lui N, et al. 2004. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 168: 585–593.CrossRefPubMedGoogle Scholar
  33. Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, et al. 2004. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 4: 84–93.CrossRefPubMedGoogle Scholar
  34. Li W, Zhang P, Fellers JP, Friebe B, Gill BS, 2004. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40: 500–511.CrossRefPubMedGoogle Scholar
  35. Mattei C, Elmorjani K, Molgo J, Marion D, Benoit E, 1998. The wheat proteins puroindoline-a and alphal-purothionin induce nodal swelling in myelinated axons. Neuroreport 9: 3803–3807.CrossRefPubMedGoogle Scholar
  36. Morris CF, 2002. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48: 633–647.CrossRefPubMedGoogle Scholar
  37. Ogihara Y, Mochida K, Nemoto Y, Murai K, Yamazaki Y, Shin IT, Kohara Y, 2003. Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J 33: 1001–1011.CrossRefPubMedGoogle Scholar
  38. Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, et al. 2004. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701–712.CrossRefPubMedGoogle Scholar
  39. Sanchez-Monge R, Gomez L, Barber D, Lopez-Otin C, Armentia A, Salcedo G, 1992. Wheat and barley allergens associated with baker’s asthma. Glycosylated subunits of the alpha-amylase-inhibitor family have enhanced IgE-binding capacity. Biochem J 281: 401–405.PubMedGoogle Scholar
  40. Scheibe R, 2004. Malate valves to balance cellular energy supply. Physiol Plant 120: 21–26.CrossRefPubMedGoogle Scholar
  41. Shewry PR, Halford NG, 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53: 947–958.CrossRefPubMedGoogle Scholar
  42. Shewry PR, Halford NG, Belton PS, Tatham AS, 2002. The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357: 133–142.CrossRefPubMedGoogle Scholar
  43. Shewry PR, Halford NG, Lafiandra D, 2003. Genetics of wheat gluten proteins. Adv Genet 49: 111–184.CrossRefPubMedGoogle Scholar
  44. Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS, 2003. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45: 219–302.CrossRefPubMedGoogle Scholar
  45. Shimoni Y, Zhu XZ, Levanony H, Segal G, Galili G, 1995. Purification, characterization, and intracellular localization of glycosylated protein disulfide isomerase from wheat grains. Plant Physiol 108: 327–335.CrossRefPubMedGoogle Scholar
  46. Simmonds D, O’Brien T, 1981. Morphological and biochemical development of the wheat endosperm. In: Pemeranz Y, ed. Advances in Cereal Science and Technology. American Association of Cereal Chemists, St. Paul, Minnesota 4: 5–70.Google Scholar
  47. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, 2004. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4: 12–25.CrossRefPubMedGoogle Scholar
  48. Turnbull K-M, Rahman S, 2002. Endosperm texture in wheat. J Cereal Sci 36: 327–337.CrossRefGoogle Scholar
  49. White JA, Todd J, Newman T, Focks N, Girke T, de Ilarduya OM, 2000. A new set ofArabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124: 1582–1594.CrossRefPubMedGoogle Scholar
  50. Wicker T, Guyot R, Yahiaoui N, Keller B, 2003. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132: 52–63.CrossRefPubMedGoogle Scholar
  51. Wilkinson B, Gilbert HF, 2004. Protein disulfide isomerase. Biochim Biophys Acta 1699: 35–44.PubMedGoogle Scholar
  52. Zhang D, Choi DW, Wanamaker S, Fenton RD, Chin A, Malatrasi M, 2004. Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168: 595–608.CrossRefPubMedGoogle Scholar
  53. Ziegler P, 1999. Cereal beta-amylases. J Cereal Sci 29: 195–204.CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2006

Authors and Affiliations

  • Debbie L. Laudencia-Chingcuanco
    • 1
  • Boryana S. Stamova
    • 2
  • Gerard R. Lazo
    • 1
  • Xiangqin Cui
    • 3
  • Olin D. Anderson
    • 1
  1. 1.Western Regional Research CenterUSDA-ARSAlbanyUSA
  2. 2.Genetic Resource Conservation ProgramUniversity of California-DavisDavisUSA
  3. 3.Department of BiostatisticsUniversity of Alabama-Birmingham, Section on Statistical GeneticsBirminghamUSA

Personalised recommendations