Advertisement

Acta Theriologica

, Volume 48, Issue 1, pp 101–111 | Cite as

Estimating the size of European rabbits consumed by predators: Relationship between body mass and tooth dimensions

  • Javier Calzada
  • Daniel T. Haydon
  • Francisco Palomares
Article

Abstract

A method for estimating body mass of European rabbitsOryctolagus cuniculus (Linnaeus, 1758) based on tooth dimensions is proposed. Regression models identified significant relationships between the body mass of 87 rabbits and individual tooth length, breadth, product of tooth length and breadth, and whether or not the individual was infected with myxomatosis. Dimensions of 10 of 14 different teeth explained over 80% of variation in body mass, and those teeth were selected as adequate predictors of rabbit body mass. Models were tested using teeth from 16 additional rabbits of known body mass. Body mass, predicted on the basis of 9 of the 10 selected teeth, was statistically indistinguishable from the observed values for all 16 individuals. When myxomatosis infection status of the rabbit was included in the model, all 10 selected teeth yielded predictions statistically indistinguishable from those observed. Prediction errors can be computed permitting statistical comparison of the average predicted value of body mass from different samples of rabbits. The model is useful in estimating rabbit body masses from teeth recovered from feces of predators and it will facilitate testing of hypotheses on size-selective predation. The method was applied to rabbit teeth found in fecal samples from the Iberian lynxLynx pardinus collected over a one-year period. Lynx preyed preferentially upon younger rabbits during the peak breeding period of this lagomorph.

Key words

Oryctolagus cuniculus Lynx pardinus body mass prediction prey remains size selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry R. E. and Barry L. M. 1996. Species composition and age structure of remains of hyraxes (Hyracoidea: Procaviidae) at nests of black eagles. Journal of Mammalogy 77: 702–707.CrossRefGoogle Scholar
  2. Calvete C. 1999. Epidemiología de enfermedad hemorrágica (VHD) y mixomatosis en el conejo silvestre (Oryctolagus cuniculus L. 1758) en el valle medio del Ebro. Modelización de VHD y herramientas de gestión. University of Zaragoza, Zaragoza: 1–287.Google Scholar
  3. Calzada J. 2000. Impacto de depredación y selección de presa del lince ibérico y el zorro sobre el conejo. University of León, León: 1–252.Google Scholar
  4. Calzada J. and Palomares F. 1996. Frecuencia de aparición de diferentes restos de conejo en excrementos de lince y zorro. Doñnana Acta Vertebrata 23: 243–252.Google Scholar
  5. Carss D. N. and Elston D. A. 1996. Errors associated with otter Lutra lutra faecal analysis. II. Estimating prey size distribution from bones recovered in spraints. Journal of Zoology, London 238: 318–332.Google Scholar
  6. Delibes M. 1980. El lince ibérico. Ecología y comportamiento alimenticios en el Coto Doñana, Huelva. Doñana Acta Vertebrata 73: 1–128.Google Scholar
  7. Delibes M. and Calderón J. 1979. Datos sobre la reproducción del conejo, Oryctolagus cuniculus (L.), en Doñana, S.O. de España, durante un año seco. Doñana Acta Vertebrata 6: 91–99.Google Scholar
  8. Delibes M. and Hiraldo F. 1981. The rabbit as prey in the mediterranean ecosystem. [In: Proceedings of the World Lagomorph Conference, Gland, 1981. K. Myers and C. D. MacInnes, eds]. University of Guelph, Ontario: 600–613.Google Scholar
  9. Dickman C. R., Predavec M. and Lynam A. J. 1991. Differential predation of size and sex classes of mice by the barn owl,Tyto alba. Oikos 62: 67–76.CrossRefGoogle Scholar
  10. Donázar J. A. and Ceballos O. 1989. Selective predation by Eagle Owls Bubo bubo on rabbits Oryctolagus cuniculus: Age and sex preferences. Ornis Scandinavica 20: 117–122.CrossRefGoogle Scholar
  11. Feltham M. J. and Marquiss M. 1989. The use of first vertebrae in separating, and estimating the size of, trout (Salmo trutta) and salmon (Salmo salar) in bone remains. Journal of Zoology, London 219: 113–122.CrossRefGoogle Scholar
  12. Flux J. E. C. 1994. World distribution. [In: The European rabbit: the history and biology of a successful colonizer. H. V. Thompson and C. M. King, eds]. Oxford University Press, Oxford: 8–21.Google Scholar
  13. Glejser H. 1969. A new test for heteroscedasticity. Journal of the American Statistical Association 64: 316–323.CrossRefGoogle Scholar
  14. Goszczyński J. and Wasilewski M. 1992. Predation of foxes on a hare population in central Poland. Acta Theriologica 37: 329–338.Google Scholar
  15. Heggberget T. M. and Moseid K.-E. 1994. Prey selection in coastal Eurasian ottersLutra lutra. Ecography 17: 331–338.CrossRefGoogle Scholar
  16. Hocking R. R. 1985. The analysis of linear models. Brooks/Cole, Monterey: 1–385.Google Scholar
  17. Jaksic F. M. and Soriguer R. C. 1981. Predation upon the European rabbit (Oryctolagus cuniculus) in mediterranean habitats of Chile and Spain: a comparative analysis. Journal of Animal Ecology 50: 269–281.CrossRefGoogle Scholar
  18. Janes S. W. and Barss J. M. 1985. Predation by three owl species on northern pocket gophers of different body mass. Oecologia 67: 76–81.CrossRefGoogle Scholar
  19. Palomares F. and Delibes M. 1991. Alimentación del meloncilloHerpestes ichneumon y de la ginetaGenetta genetta en la Reserva Biológica de Doñana, S. O. de la Península Ibérica. Doñnana Acta Vertebrata 18: 5–20.Google Scholar
  20. Palomares F. and Delibes M. 1997. Predation upon European rabbits and their use of open and closed patches in Mediterranean habitats. Oikos 80: 407–410.CrossRefGoogle Scholar
  21. Popesko P., Rajtová V. and Horák J. 1990. A colour atlas of the anatomy of small laboratory animals. Vol 1: Rabbit, Guinea pig. Wolfe, London: 1–255.Google Scholar
  22. Rogers P. M., Arthur C. P. and Soriguer R. C. 1994. The rabbit in continental Europe. [In: The European rabbit: The history and biology of a successful colonizer. H. V. Thompson and C. M. King, eds]. Oxford University Press, Oxford: 22–63.Google Scholar
  23. Rohner C., Smith J. N. M., Stroman J., Joyce M., Doyle F. I. and Boonstra R. 1995. Northern hawk-owls in the nearctic boreal forest: prey selection and population consequences of multiple prey cycles. The Condor 97: 208–220.CrossRefGoogle Scholar
  24. Sharma S. 1996. Applied multivariate techniques. New York, Wiley: 1–512.Google Scholar
  25. Sokal R. R. and Rohlf F. J. 1995. Biometry. W. H. Freeman and Company, New York: 1–887.Google Scholar
  26. Soriguer R. C. 1981. Biología y dinámica de una población de conejos (Oryctolagus cuniculus, L.) en Andalucía Occidental. Doñana Acta Vertebrata 8: 1–343.Google Scholar
  27. SPSS 1989. SPSS v. 7.5. User’s manual. Chicago.Google Scholar
  28. Thompson H. V. and King C. M. 1994. The European rabbit: the history and biology of a successful colonizer. Oxford University Press, Oxford: 1–245.Google Scholar
  29. Villafuerte R. 1994. Riesgo de predación y estrategias defensivas del conejo,Oryctolagus cuniculus, en el Parque Nacional de Doñana. University of Córdoba, Córdoba: 1–229.Google Scholar
  30. Wise M. H. 1980. The use of fish vertebrae in scats for estimating prey size of otters and mink. Journal of Zoology, London 192: 25–31.CrossRefGoogle Scholar
  31. Zalewski A. 1996. Choice of age classes of bank volesClethrionomys glareolus by pine martenMartes martes and tawny owlStrix aluco in Białowieża National Park. Acta Oecologica 17: 233–244.Google Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2003

Authors and Affiliations

  • Javier Calzada
    • 1
  • Daniel T. Haydon
    • 2
  • Francisco Palomares
    • 1
  1. 1.Department of Applied Biology, Estación Biológica de DoñnanaCSICSevillaSpain
  2. 2.Centre for Tropical Veterinary MedicineEaster BushRoslin, MidlothianScotland

Personalised recommendations