Acta Theriologica

, Volume 53, Issue 2, pp 143–156 | Cite as

The influence of trap density and sampling duration on the detection of small mammal species richness

  • Jonathan M. Conard
  • Jeremy A. Baumgardt
  • Philip S. Gipson
  • Donald P. Althoff


Assessing species richness of small mammal communities is an important research objective for many live-trapping studies designed to assess or monitor biological diversity. We tested the effectiveness and efficiency of various trap densities for determining estimates and counts of small mammal species richness. Trapping was conducted in grassland habitats in northeastern Kansas during spring and fall of 2002 and 2003. Estimates and counts of species richness were higher at increased trap densities. This effect appeared to be primarily due to the higher number of individuals sampled at higher trap densities. At least 3 nights duration was needed to produce a stable estimate of species richness for the range of trap densities tested (9–144 trap stations/ha). Higher trap densities generally reached stable richness estimates in fewer nights than low density trapping arrangements. Given that counts and estimates of species richness were influenced by trap density and sampling duration, it is critical that these parameters are selected to most effectively meet research objectives.

Key words

detection probability duration small mammal species richness trap density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Althoff D. P., Gipson P. S., Pontius J. S. and Woodford P. B. 2006. Plant community and bare ground trends on Fort Riley, Kansas: implications for monitoring a highly disturbed landscape. Transactions of the Kansas Academy of Science 109: 101–119.CrossRefGoogle Scholar
  2. Anderson C. S. and Meikle D. B. 2006. Annual changes in structural complexity of understory vegetation and relative abundance ofPeromyscus leucopus in fragmented habitats. Acta Theriologica 51: 43–51.CrossRefGoogle Scholar
  3. Andrianjakarivelo V., Razafimahatratra E., Razafindrakoto Y. and Goodman S. M. 2005. The terrestrial small mammals of the Parc National de Masoala, northeastern Madagascar. Acta Theriologica 50: 537–549.CrossRefGoogle Scholar
  4. Baumgardt J. A. 2005. The effects of trapping methods on estimation of population parameters for small mammals. MSc thesis, Kansas State University, Kansas: 1–80.Google Scholar
  5. Bowman J., Corkum C. V. and Forbes G. J. 2001. Spatial scales of trapping in small mammal research. The Canadian Field-Naturalist 115: 472–475.Google Scholar
  6. Brewer A. and Williamson M. 1994. A new relationship for rarefaction. Biodiversity and Conservation 3: 373–379.CrossRefGoogle Scholar
  7. Caro T. M. 2001. Species richness and abundance of small mammals inside and outside an African national park. Biological Conservation 98: 251–257.CrossRefGoogle Scholar
  8. Chao A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783–791.CrossRefPubMedGoogle Scholar
  9. Clark B. K., Kaufman D. W., Kaufman G. A., Finck E. J. and Hand S. S. 1988. Long-distance movements byReithrodontomys megalotis in tallgrass prairie. American Midland Naturalist 120: 276–281.CrossRefGoogle Scholar
  10. Collins S. L. and Glenn S. M. 1991. Importance of spatial and temporal dynamics in species regional abundance and distribution. Ecology 72: 654–664.CrossRefGoogle Scholar
  11. Colwell R. K. 2000. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide), Version 7. http://viceroy. Scholar
  12. Colwell R. K. and Coddington J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London: Biological Sciences 345: 101–118.CrossRefPubMedGoogle Scholar
  13. Conard J. M. 2003. Responses of small mammals and their predators to military disturbance in tallgrass prairie. MSc thesis, Kansas State University, Kansas: 1–91.Google Scholar
  14. Engqvist L. 2005. The mistreatment of covariate interactions terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour 70: 967–971.CrossRefGoogle Scholar
  15. Fryxell J. M., Falls J. B., Falls E. A. and Brooks R. J. 1998. Long-term dynamics of small-mammal populations in Ontario. Ecology 79: 213–225.CrossRefGoogle Scholar
  16. Gannon W. L. and Sikes R. S. 2007. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 88: 809–823.CrossRefGoogle Scholar
  17. Gotelli N. J. and Colwell R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.CrossRefGoogle Scholar
  18. Gotelli N. J. and Entsminger G. L. 2007. EcoSim: Null models software for ecology, Version 7. Acquired Intelligence Inc. & Kesey-Bear, Jericho, VT. Scholar
  19. Granjon L., Houssin C., Lecompte E., Angaya M., Cesar J., Cornette R., Dobigny G., and Denys C. 2004. Community ecology of terrestrial small mammals of Zakouma National Park, Chad. Acta Theriologica 49: 215–234.CrossRefGoogle Scholar
  20. Horton D. R. and Redak R. A. 1993. Further comments on analysis of covariance in insect dietary studies. Entomologia Experimentalis et Applicata 69: 263–275.CrossRefGoogle Scholar
  21. Huitema B. E. 1980. The analysis of covariance and alternatives. Wiley, New York: 1–445.Google Scholar
  22. Kaufman G. A. and Kaufman D. W. 2006. Terrestrial mammals of the Smoky Hills Army National Guard Training Facility, Saline County, Kansas. Transactions of the Kansas Academy of Science 109: 120–124.CrossRefGoogle Scholar
  23. Lambert T. D., Malcom J. R. and Zimmerman B. L. 2005. Variation in small mammal species richness by trap height and trap type in southeastern Amazonia. Journal of Mammalogy 86: 982–990.CrossRefGoogle Scholar
  24. MacKenzie D. I., Nichols J. D., Hines J. E., Knutson M. G., Franklin A. B. 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84: 2200–2207.CrossRefGoogle Scholar
  25. MacKenzie D. I., Nichols J. D., Lachman G. B., Droege S., Royle J. A. and Langtimm C. A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248–2255.CrossRefGoogle Scholar
  26. MacKenzie D. I., Nichols J. D., Royle J. A., Pollock K. H., Hines J. E. and Bailey L. L. 2006. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, California: 1–344.Google Scholar
  27. Magurran A. E. 1988. Ecological diversity and its measurement. Princeton University Press, New Jersey: 1–192.Google Scholar
  28. McNab B. K. 1963. Bioenergetics and the determination of home range size. The American Naturalist 97: 133–140.CrossRefGoogle Scholar
  29. Milliken G. A. and Johnson D. E. (eds) 2002. Analysis of messy data v(3): analysis of covarianc. Chapman Hall/CRC, Florida: 1–605.Google Scholar
  30. Myers N., Mittermeier R. A., Mittermeier C. G., Fonseca G. A. B. and Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.CrossRefPubMedGoogle Scholar
  31. Otis D. L., Burnham K. P. and White G. C. White and Anderson D. R. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62: 1–135.Google Scholar
  32. Ott R. L. and Longnecker M. (eds) 2001. An introduction to statistical methods and data analysis. 5th ed. Duxbury Press, California: 1–1184.Google Scholar
  33. Peterson A. T. and Slade N. A. 1998. Extrapolating inventory results into biodiversity estimates and the importance of stopping rules. Diversity and Distributions 4: 95–105.CrossRefGoogle Scholar
  34. Pitts R. M., Levalley M. G. and Klinger S. 1987. Mammals of Fort Riley, Kansas. Transactions of the Kansas Academy of Science 90: 75–80.CrossRefGoogle Scholar
  35. Pollock K. H., Nichols J., Brownie C. and Hines J. 1990. Statistical inference from capture-recapture experiments. Wildlife Monographs 107: 1–97.Google Scholar
  36. Quinn G. P. and Keough M. J. 2002. Experimental design and analysis for biologists. Cambridge University Press, Cambridge: 1–537.Google Scholar
  37. Robinson G. R., Holt R. D., Gaines M. S., Hamburg S. P., Johnson M. L., Fitch H. S. and Mattinko E. A. 1992. Diverse and contrasting effects of habitat fragmentation. Science 257: 524–526.CrossRefPubMedGoogle Scholar
  38. SAS V9. 2002. SAS for Windows, version 9.0. SAS Institute Inc., Cary, NC.Google Scholar
  39. Sauer J. R. and Williams B. K. 1989. Generalized procedures for testing hypotheses about survival or recovery rates. The Journal of Wildlife Management 53: 137–142.CrossRefGoogle Scholar
  40. Schlesser M., Boulenge E. L. and Schtickzelle N. 2002. Can demographic parameters be estimated from capture-recapture data on small grids? A test with forest rodents. Acta Theriologica 47: 323–332.CrossRefGoogle Scholar
  41. Shanker K. 2000. Small mammal trapping in tropical montane forests of the Upper Nilgris, southern India: an evaluation of capture-recapture models in estimating abundance. Journal of Biosciences 25: 99–111.CrossRefPubMedGoogle Scholar
  42. Skalski J. R. and Robson D. S. 1992. Techniques for wildlife investigations: design and analysis of capture data. Academic Press, California: 1–237.Google Scholar
  43. Slade N. A., Eifler M. A., Gruenhagen N. M. and Davelos A. L. 1993. Differential effectiveness of standard and long Sherman livetraps in capturing small mammals. Journal of Mammalogy 74: 162–167.CrossRefGoogle Scholar
  44. Stanley W. T. and Hutterer R. 2007. Differences in abundance and species richness between shrews and rodents along an elevational gradient in the Udzungwa Mountains, Tanzania. Acta Theriologica 52: 261–275.CrossRefGoogle Scholar
  45. Steele B. B., Bayn Jr R. L. and Grant C. V. 1984. Environmental monitoring using populations of birds and small mammals: analyses of sampling effort. Biological Conservation 30: 157–172.CrossRefGoogle Scholar
  46. Swihart R. K. and Slade N. A. 1990. Long-term dynamics of an early successional small mammal community. American Midland Naturalist 123: 372–382.CrossRefGoogle Scholar
  47. Torre I., Arrizabalaga A. and Flaquer C. 2004. Three methods for assessing richness and composition of small mammal communities. Journal of Mammalogy 85: 524–530.CrossRefGoogle Scholar
  48. Weihong J. I., Veitch C. R. and Craig J. L. 1999. An evaluation of the efficiency of rodent trapping methods: the effect of trap arrangement, cover types, and bait. New Zealand Journal of Ecology 23: 45–51.Google Scholar
  49. Wiens J. A. 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.CrossRefGoogle Scholar
  50. Williams S. E., Marsh S. and Winter J. 2002. Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology 83: 1317–1329.CrossRefGoogle Scholar
  51. Wilson D. E., Cole F. R., Nichols J. D., Rudran R. and Foster M. S. 1996. Measuring and monitoring biological diversity. Standard methods for mammals. Smithsonian Insitution Press, Washington D.C.: 1–409.Google Scholar
  52. Woodman N., Timm R. M., Slade N. A. and Doonan T. J. 1996. A comparison of traps and baits for censusing small mammals in neotropical lowlands. Journal of Mammalogy 77: 274–281.CrossRefGoogle Scholar
  53. Yoccoz N. G., Nichols J. D. and Boulinier T. 2001. Monitoring of biological diversity in space and time. Trends in Ecology and Evolution 16: 446–453.CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2008

Authors and Affiliations

  • Jonathan M. Conard
    • 1
  • Jeremy A. Baumgardt
    • 2
  • Philip S. Gipson
    • 1
  • Donald P. Althoff
    • 1
  1. 1.U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit, Division of BiologyKansas State UniversityManhattanUSA
  2. 2.College of Natural ResourcesUniversity of IdahoMoscowUSA

Personalised recommendations