Acta Theriologica

, Volume 48, Issue 3, pp 347–357 | Cite as

Body composition and gut length ofAkodon azarae (Muridae: Sigmodontinae): relationship with energetic requirements

  • Juana Cristina Del Valle
  • Cristina Busch


Akodon azarae (J. Fischer, 1829) is a small omnivorous murid rodent that lives in environments with seasonal fluctuations of food. Seasonal variation in its body composition and gut length, in relation to reproductive status, was studied. Physical Condition Index (PCI) and body composition showed seasonal differences, however, there were no differences in intestine length. The PCI was higher for both mature males and reproductive females compared to immature males and non-reproductive females. Lipid, protein and ash content showed differences in relation to reproductive status. The results suggest thatA. azarae meets the additional costs of pregnancy and lactation by increasing energy intake, without relying on reserves.

Key words

Akodon azarae body composition gut plasticity rodent food energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antinuchi C. D. 1996. Balance hidrosalino y metabolismo energético deAkodon azarae. PhD thesis, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires: 1–114.Google Scholar
  2. Antinuchi C. D. and Busch C. 2001. Reproductive energetics and thermoregulatory status of nestlings in pampa miceAkodon azarae (Rodentia: Sigmodontinae). Physiological and Biochemical Zoology 74: 319–324.CrossRefPubMedGoogle Scholar
  3. Bilenca N. D. 1993. Caracterización de los nichos ecológicos y organización de las comunidades de roedores cricétidos en la región Pampeana. PhD thesis, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires: 1–179.Google Scholar
  4. Blatzi G. O. and Esseks E. 1992. Body fat as an indicator of nutritional condition for the brown lemming. Journal of Mammalogy 73: 431–439.CrossRefGoogle Scholar
  5. Borkowska A. 1995. Seasonal changes in gut morphology of striped field mouse (Apodemus agrarius). Canadian Journal of Zoology 73: 1095–1099.CrossRefGoogle Scholar
  6. Bozinovic F. 1993a. Physiological ecology of foraging and digestion in vertebrates: models and theories. Revista Chilena de Historia Natural 66: 375–382.Google Scholar
  7. Bozinovic F. 1993b. Nutritional ecophysiology of andean mouseAbrothrix andinus: energy requirements, food quality and turnover time. Comparative Biochemistry and Physiology A 104: 601–604.CrossRefGoogle Scholar
  8. Bozinovic F., Novoa F. F. and Veloso C. 1990. Seasonal changes in energy expediture and digestive tract ofAbrothrix andinus (Cricetidae) in the Andes Range. Physiological Zoology 63: 1216–1231.Google Scholar
  9. Bozinovic F., Novoa F. F. and Sabat P. 1997. Feeding and digesting fiber and tannins by an herbivorous rodent,Octodon degus (Rodentia: Caviomorpha). Comparative Biochemistry and Physiology A 118: 625–630.CrossRefGoogle Scholar
  10. Cabrera A. L. 1941. Las comunidades vegetales de las dunas costaneras de la Provincia de Buenos Aires. DAGI publicaciones técnicas. Dirección de Agricultura, Ganadería e Industrias. Ministerio de Obras Públicas 1(2): 1–62.Google Scholar
  11. Campell K. L. and MacArthur R. A. 1996. Seasonal changes in gut mass, forage digestibility, and nutrient selection of wild muskrats (Ondatra zibethicus). Physiological Zoology 69: 1215–1231.Google Scholar
  12. Carey C. 1993. Regulation of gut structure and function in hibernators. [In: Life in the cold. Ecological, physiological, and molecular mechanisms. C. Carey, G. L. Florant, B. A. Wunder and B. Horwitz, eds]. Westview Press, Boulder, San Francisco, Oxford: 155–165.Google Scholar
  13. Castle K. T. and Wunder B. A. 1995. Limits to food intake and fiber utilization in the prairie vole,Microtus ochrogaster: effects of food quality and energy needs. Journal of Comparative Physiology B 164: 609–617.CrossRefGoogle Scholar
  14. Caviedes-Vidal E., Afik D., Martinez del Rio C. and Karasov W. H. 2000. Dietary modulation of intestinal enzymes of the house sparrow (Passer domesticus): testing an adaptive hypothesis. Comparative Biochemistry and Physiology A 125: 11–24Google Scholar
  15. Derting T. L. and Bogue B. A. 1993. Responses of the gut to moderate energy demands in a small herbivore (Microtus pennsylvanicus). Journal of Mammalogy 74: 59–68.CrossRefGoogle Scholar
  16. Derting T. L. and Noakes E. B. 1995. Seasonal changes in gut capacity in the white-footed mouse (Peromyscus leucopus) and meadow vole (Microtus pennsylvanicus). Canadian Journal of Zoology 73: 243–252.CrossRefGoogle Scholar
  17. Dobush G. R., Ankey G. D., and Krementz D. G. 1985. The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Canadian Journal of Zoology 63: 1917–1920.CrossRefGoogle Scholar
  18. Fedyk A. 1974a. Gross body composition in postnatal development of the bank vole. II. Differentiation of seasonal generations. Acta Theriologica 19: 403–427.Google Scholar
  19. Fedyk A. 1974b. Gross body composition in postnatal development of the bank vole. III. Estimating age. Acta Theriologica 19: 429–440.Google Scholar
  20. Gross J. E., Wang Z. and Wunder B. A. 1985. Effects of food quality and energy needs: changes in gut morphology and capacity ofMicrotus ochrogaster. Journal of Mammalogy 66: 661–667.CrossRefGoogle Scholar
  21. Hammond K. A. and Diamond J. 1992. An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiological Zoology 65: 952–977.Google Scholar
  22. Hammond K. A. and Wunder B. A. 1991. The role of diet quality and energy need nutritional ecology of a small herbivoreMicrotus ochrogaster. Physiological Zoology 64: 541–567.Google Scholar
  23. Karasov W. H. 1986. Energetics, physiology and vertebrate ecology. Trends in Ecology and Evolution 1: 101–104.CrossRefGoogle Scholar
  24. Kirkwood J. K. 1983. A limit to metabolisable energy intake in mammals and birds. Comparative Biochemistry and Physiology A 75: 1–3.CrossRefGoogle Scholar
  25. Krebs J. R. and Davies N. B. 1993. Parental care and mating systems. [In: An introduction to behavioral ecology. J. R. Krebs and N. B. Davies, eds]. Blackwell Scientific Publications, Oxford: 208–243.Google Scholar
  26. Millar J. S. and Schieck J. O. 1986. An annual lipid cycle in a montane population ofPeromyscus maniculatus. Canadian Journal of Zoology 64: 1981–1985.CrossRefGoogle Scholar
  27. Mutze G. J. 1990. Fat cycles, breeding and population changes in house mice. Australian Journal of Zoology 38: 453–464.CrossRefGoogle Scholar
  28. Olsson G. E., White N., Ahlm C., Elgh F., Verlemyr A., Juto P. and Palo R. T. 2002. Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus). Emerging Infectious Diseases 8: 924–929.PubMedGoogle Scholar
  29. Pearson O. P. 1967. La estructura por edades y la dinámica reproductiva de una población de roedores de campo,Akodon azarae. Physis 27: 53–58.Google Scholar
  30. Penry D. L. and Jumars P. A. 1987. Modeling animals guts as chemical reactors. The American Naturalist 129: 69–96.CrossRefGoogle Scholar
  31. Redford K. H. and Eisenberg J. F (eds) 1992. Mammals of Neotropics. The South Cone, University of Chicago Press, Chicago: 1–430.Google Scholar
  32. Reta R., Martos P., Perillo G. M. E., Piccolo M. C. and Ferrante A. 2001. Características hidrográficas del estuario de la laguna de Mar Chiquita. [In: Reserva de Biosfera Mar Chiquita. Características físicas, biológicas y ecológicas. O. Iribarne, ed]. UNESCO, Editorial Martín, Universidad Nacional de Mar del Plata, Mar del Plata: 31–52.Google Scholar
  33. Sabat P. and Bozinovic F. 1994. Cambios estacionales en la actividad de enzimas digestivas en el pequelo marsupial chilenoThylamys elegans: disacaridasas intestinales. Revista Chilena de Historia Natural 67: 221–228.Google Scholar
  34. Sabat P. and Bozinovic F. 2000. Digestive plasticity and the cost of acclimation to dietary chemistry in the omnivorous leaf-eared mousePhyllotis darwini. Journal of Comparative Physiology B 170: 411–417.CrossRefGoogle Scholar
  35. Sabat P., Lagos J. A. and Bozinovic F. 1999. Test of the adaptive modulation hypothesis in rodents: dietary flexibility and enzyme plasticity. Comparative Biochemistry and Physiology A 123: 83–87.CrossRefGoogle Scholar
  36. Sabat P., Novoa F., Bozinovic F. and Martinez del Rio C. 1998. Dietary flexibility and intestinal plasticity in birds: a field and laboratory study. Physiological Zoology 71: 226–236.PubMedGoogle Scholar
  37. Sawicka-Kapusta K. 1974. Changes in the gross body composition and energy value of the bank vole during postnatal development. Acta Theriologica 19: 27–54.Google Scholar
  38. Suárez O. V. 1996. Estrategias reproductivas y cuidado parental enAkodon azarae (Rodentia: Muridae). PhD thesis, Universidad Nacional de Buenos Aires, Buenos Aires: 1–215.Google Scholar
  39. Voltura M. V. 1997. Seasonal variation in body composition and gut capacity of the prairie vole (Microtus ochrogaster). Canadian Journal of Zoology 75: 1714–1719.CrossRefGoogle Scholar
  40. Zuleta G. O., Kravetz F. O., Busch M. y Percich R. 1988. Dinámica poblacional del ratón del pastizal pampeano (Akodon azarae) en ecosistemas agrarios de Argentina. Revista Chilena de Historia Natural 61: 231–244.Google Scholar
  41. Willett W. C. 1998. Nutritional epidemiology. Monographs in epidemiology and biostatistics. 2nd ed. Oxford University Press, New York 30: 1–497.Google Scholar
  42. Zar J. H. 1984. Biostatistical analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey: 1–718.Google Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2003

Authors and Affiliations

  1. 1.Laboratorio Ecofisiología, Departamento BiologíaUniversidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations