Advertisement

Acta Theriologica

, Volume 51, Issue 2, pp 113–128 | Cite as

The evolution of energetics in eutherian “insectivorans”: an alternate approach

  • Brian K. Mcnab
Article

Abstract

An analysis of standard energetics in 57 species of “insectivorans”, small eutherians that preferentially feed on soil invertebrates, indicated that a combination of climate, the use of torpor, substrate, food habits, and log10 body mass accounted for 92.5% of the variation in log10 basal rate of metabolism in insectivorans, whereas log10 body mass alone accounted for 76.7% of the variation. With the addition of subfamily affiliation, this analysis accounted for 95.5% of the variation in log10 basal rate, the most distinctive subfamilies being Soricinae and the Talpinae, which have equally high basal rates.Sorex species have basal rates that average 2.5 times those of tropical crocidurines, reflecting an approach bySorex to life in cold climates that does not include the use of torpor, a stratagem widely used by crocidurines in warm-temperate and tropical climates. The absence of torpor inSorex may facilitate a high reproductive rate through a high basal rate of metabolism, a combination that may be incompatible with a small mass, insectivorous food habits, and life in the lowland tropics, but required in cold-temperate environments. Insectivorans other than shrews, moles, and cold-temperature hedgehogs have low basal rates principally in association with tropical distributions and the use of torpor. Basal rate of metabolism in insectivorans also correlated with ordinal, familial, subfamilial, and tribal affiliations. The suggestion that phylogeny is an important determinant of performance characters like rate of metabolism ignores the requirement that performance must be compatible with conditions in the environment and with a species’ other characteristics. The principal reason why performance characters are correlated with taxonomic affiliation is that many clades consist of species that share a common approach to the environment. Thus, clades not only represent evolutionary histories, they also are crude measures of physiological and behavioral performances.

Key words

Afrotheria basal rate of metabolism body temperature climate Lipotyphla food habits habitat phylogeny torpor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong D. M. and Knox Jones J. Jr 1972.Notiosorex crawfordi. Mammalian Species 17: 1–5.Google Scholar
  2. Asher R. J. 1999. A morphological basis for assessing the phylogeny of the “Tenrecoidea” (Mammalia, Lipotyphla). Cladistics 15: 231–252.Google Scholar
  3. Asher R. J., Novacek M. J. and Geisler J. H. 2003. Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. Journal of Mammalian Evolution 10: 131–194.CrossRefGoogle Scholar
  4. Brown C. R., Hunter E. M. and Baxter R. M. 1997. Metabolism and thermoregulation in the forest shrewMyosorex varius (Soricidae: Crocidurinae). Comparative Biochemistry and Physiology 118A: 1285–1290.Google Scholar
  5. Campbell K. L. and Hochachka P. W. 2000. Thermal biology and metabolism of the American shrew-mole,Neurotrichus gibbsii. Journal of Mammalogy 81: 578–585.CrossRefGoogle Scholar
  6. Campbell K. L., Mclntyre I. W. and MacArthur R. A. 1999. Fasting metabolism and thermoregulatory competence of the star-nosed mole,Condylura cristata (Talpidae: Condylurinae). Comparative Biochemistry and Physiology 123A: 293–298.Google Scholar
  7. Contreras L. C. and McNab B. K. 1990. Thermoregulation and energetics in subterranean mammals. [In: Evolution of Subterranean Mammals at the Organismal and Molecular Levels. E. Nevo and O. A. Reig, eds]. Wiley- Liss. New York: 231–250.Google Scholar
  8. Cruz-Neto A. P., Garland T. Jr and Abe A. S. 2001. Diet, phylogeny, and basal metabolic rate in phyllostomid bats. Zoology 104: 49–58.CrossRefPubMedGoogle Scholar
  9. Dannelid E. 1998. Dental adaptation in shrews. [In: Evolution of shrews. J. M. Wöjcik and M. Wolsan, eds]. Mammal Research Institute, Polish Academy of Sciences, Białowieża: 157–174.Google Scholar
  10. Dausmann K. H., Glos J., Ganzhorn J. U. and Heldmaier G. 2004. Hibernation in a tropical primate. Nature 429: 825–826.CrossRefPubMedGoogle Scholar
  11. Dausmann K. H., Glos J., Ganzhorn J. U. and Heldmaier G. 2005. Hibernation in the tropics: lessons from a primate. Journal of Comparative Physiology B. 175: 147–155.CrossRefGoogle Scholar
  12. Dehnel A. 1949. Studies on the genusSorex L. Annales of the University Marie Curie-Skłodowska, Section C Biology 4: 17–102.Google Scholar
  13. Downs C. T. and Perrin M. R. 1995. The thermal biology of three southern African elephant-shrews. Journal of Thermal Biology 20: 445–450.CrossRefGoogle Scholar
  14. Dryden G. L., Gębczyński M. and Douglas E. L. 1974. Oxygen consumption by nursling and adult musk shrews. Acta Theriologica 19: 453–461.Google Scholar
  15. Eisenberg J. F. and Redford K. H. 1999. Mammals of the Neotropics. Volume 3: The Central Neotropics. University of Chicago Press, Chicago: 1–609.Google Scholar
  16. Fielden L. J., Waggoner J. P., Perrin M. R. and Hickman G. C. 1990. Thermoregulation in the Namib desert golden mole,Eremitalpa granti namibensis (Chrysochloridae). Journal of Arid Environments 18: 221–237.Google Scholar
  17. Fons R., Poitevin F., Catalan J. and Croset H. 1997. Decrease in litter size in the shrewCrocidura suaveolens (Mammalia, Insectivora) from Corsica (France): evolutionary response to insularity? Canadian Journal of Zoology 75: 954–958.CrossRefGoogle Scholar
  18. Frey H. 1980. Étude de la Thermorégulation et du Budget Energétique deSuncus etruscus (Soricidae, Insectivora). PhD thesis, University of Lausanne, Lausanne: 1–121.Google Scholar
  19. Garland T. Jr, Harvey P. H. and Ives A. R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18–32.Google Scholar
  20. Genoud M. 1988. Energetic strategies of shrews: ecological constraints and evolutionary implications. Mammal Review 18: 173–193.CrossRefGoogle Scholar
  21. Genoud M. and Hutterer R. 1990.Crocidura russula (Hermann, 1780) — Hauspitzmaus. [In: Handbuch der Säugetiere Europas. J. Niethammer and F. Krapp, eds]. Aula-Verlag, Wiesbaden: 492–452.Google Scholar
  22. Genoud M. and Ruedi M. 1996. Rate of metabolism, temperature regulation, and evaporative water loss in the lesser gymnureHylomys suillus (Insectivora, Mammalia). Journal of Zoology, London 240: 309–316.CrossRefGoogle Scholar
  23. Genoud M. and Vogel P. 1990. Energy requirements during reproduction and reproductive effort in shrews (Soricidae). Journal of Zoology, London 220: 41–60.CrossRefGoogle Scholar
  24. Gusztak R. W., MacArthur R. A. and Campbell K. L. 2005. Bioenergetics and thermal physiology of American water shrews (Sorex palustris). Journal of Comparative Physiology B 175: 87–95.CrossRefGoogle Scholar
  25. Hammel H. T., Dawson T. J., Abrams R. M. and Andersen H. T. 1968. Total calorimetric measurements onCitellus lateralis in hibernation. Physiological Zoology 41: 341–357.Google Scholar
  26. Harvey P. H. and Pagel M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford: 1–239.Google Scholar
  27. Harvey P. H, Pagel M. D. and Rees J. A. 1991. Mammalian metabolism and life histories. The American Naturalist 137: 556–566.CrossRefGoogle Scholar
  28. Hedges S. B. 2001. Afrotheria: plate tectonics meets genomics. Proceedings of the National Academy of Sciences, USA 98: 1–2.CrossRefGoogle Scholar
  29. Hildwein G. 1972. Cycle saisonnier des capacities thermorégulatrices, en ambiance neuter et chaude, d’un insectivore de Madagascar, l’ericulus (Setifer setosus). Archives des Sciences Physiologiques 26: 325–337.PubMedGoogle Scholar
  30. Kenagy G. J. and Vleck D. 1982. Daily temporal organization of metabolism in small mammals: adaptation and diversity. [In: Vertebrate Circadian Systems. J. Aschoff, S. Daan and G. Groos, eds]. Springer, Berlin: 322–338.Google Scholar
  31. Kröl E. 1994. Metabolism and thermoregulation in the eastern hedgehog,Erinaceus concolor. Journal of Comparative Physiology B 164: 503–507.CrossRefGoogle Scholar
  32. Layne J. N. and Redmond J. R. 1959. Body temperatures of the least shrew,Cryptotis parva floridana (Merriam, 1985). Säugetierkundliche Mitteilungen 7: 169–172.Google Scholar
  33. Leon B., Shkolnik A. and Shkolnik T. 1983. Temperature regulation and water metabolism in the elephant shrewElephantulus edwardi. Comparative Biochemistry and Physiology 74A: 399–407.Google Scholar
  34. Lindstedt S. L. 1980. Energetics and water economy of the smallest desert mammal. Physiological Zoology 53: 82–97.Google Scholar
  35. Lovegrove B. G. 1986. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69: 551–555.CrossRefGoogle Scholar
  36. Lovegrove B. G. 2000. The zoogeography of mammalian basal rate. The American Naturalist 156: 201–219.CrossRefPubMedGoogle Scholar
  37. Lovegrove B. G. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. Journal of Comparative Physiology B. 173: 87–112.Google Scholar
  38. Lovegrove B. G., Raman J. and Perrin M. R. 2001. Heterothermy in elephant shrews,Elephantalus spp. (Macroscelidea): daily torpor or hibernation? Journal of Comparative Physiology B 171: 1–10.CrossRefGoogle Scholar
  39. MacMillen R. E. 1965. Aestivation in the cactus mouse, Peromyscus eremicus. Comparative Biochemistry and Physiology 16: 227–248.CrossRefPubMedGoogle Scholar
  40. Magnanou E., Fons R., Blondel J. and Morand S. 2005. Energy expenditure in Crocidurinae shrews (Insectivora): Is metabolism a key component of the insular syndrome? Comparative Biochemistry and Physiology 142 A: 276–285.Google Scholar
  41. McNab B. K. 1971. On the ecological significance of Bergmann’s rule. Ecology 52: 845–854.CrossRefGoogle Scholar
  42. McNab B. K. 1979. The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60: 1010–1021.CrossRefGoogle Scholar
  43. McNab B. K. 1980a. Food habits, energetics, and the population biology of mammals. The American Naturalist 116: 106–124.CrossRefGoogle Scholar
  44. McNab B. K. 1980b. Energetics and the limits to a temperate distribution in armadillos. Journal of Mammalogy 61: 606–627.CrossRefGoogle Scholar
  45. McNab B. K. 1984. Physiological convergence amongst ant-eating and termite-eating mammals. Journal of Zoology, London 203: 485–510.CrossRefGoogle Scholar
  46. McNab B. K. 1986. The influence of food habits on the energetics of eutherian mammals. Ecological Monographs 56: 1–19.CrossRefGoogle Scholar
  47. McNab B. K. 1991. The energy expenditure of shrews. [In: The Biology of the Soricidae. J. S. Findley and T. L. Yates, eds]. The Museum of Southwestern Biology, University of New Mexico, Albuquerque: 35–45.Google Scholar
  48. McNab B. K. 1992. A statistical analysis of mammalian rates of metabolism. Functional Ecology 6: 672–679.CrossRefGoogle Scholar
  49. McNab B. K. 1994. Resource use and the occurrence of land and freshwater vertebrates on oceanic islands. The American Naturalist 144: 643–660.CrossRefGoogle Scholar
  50. McNab B. K. 1999. On the comparative ecological and evolutionary significance of total and mass-specific rates of metabolism. Physiological and Biochemical Zoology 72: 642–644.CrossRefPubMedGoogle Scholar
  51. McNab B. K. 2002. Minimizing energy expenditure facilitates vertebrate persistence on oceanic islands. Ecological Letters 5: 693–704.CrossRefGoogle Scholar
  52. McNab B. K. 2003. Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analyses. Comparative Biochemistry and Physiology 135A: 357–368.Google Scholar
  53. McNab B. K. 2005a. Food habits and the evolution of energetics in birds of paradise (Paradisaeidae). Journal of Comparative Physiology 175: 117–132.Google Scholar
  54. McNab B. K. 2005b. Ecological factors influence energetics in the Order Carnivora. Acta Zoologica Sinica 51: 535–545.Google Scholar
  55. McNab B. K. and Ellis H. I. (in press). Flightless rails endemic to islands have lower energy expenditures and clutch sizes than flighted rails on islands and continents. Comparative Biochemistry and Physiology.Google Scholar
  56. McNab B. K. and Morrison P. R. 1963. Body temperature and metabolism in subspecies ofPeromyscus from arid and mesic environments. Ecological Monographs 33: 63–82.CrossRefGoogle Scholar
  57. Merritt J. F. 1995. Seasonal thermogenesis and changes in body mass of masked shrews,Sorex cinereus. Journal of Mammalogy 76: 1020–1035.CrossRefGoogle Scholar
  58. Morrison P. R. and McNab B. K. 1962. Daily torpor in a Brazilian murine opossum (Marmosa). Comparative Biochemistry and Physiology 6: 57–68.CrossRefGoogle Scholar
  59. Morrison P. R., Ryser F. A. and Dawe A. R. 1959. Studies on the physiology of the masked shrewSorex cinereus. Physiological Zoology 32: 256–271.Google Scholar
  60. Mueller P. and Diamond J. 2001. Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proceedings of the National Academy of Science, USA 98: 12550–12554.CrossRefGoogle Scholar
  61. Muhoz-Garcia A. and Williams J. B. 2005. Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiological and Biochemical Zoology 78: 1039–1056.CrossRefGoogle Scholar
  62. Nagel A. 1985. Sauerstoffverbrauch, temperaturregulation und herzfrequenz bei europäischen Spitzmäusen (Soricidae). Zeitschrift für Säugetierkunde 50: 249–266.Google Scholar
  63. Nagel A. 1994. Metabolie rates and regulation of cardiac and respiratory function in European shrews. [In: Advances in the Biology of Shrews J. F. Merritt, G. L. Kirkland Jr and R. K. Rose eds]. Carnegie Museum of Natural History Special Publication 18: 421–434.Google Scholar
  64. Ochocihska D. and Taylor J. R. E. 2003. Bergmann’s rule in shrews: geographical variation in body size in PalearcticSorex species. Biological Journal of the Linnean Society 78: 365–381.CrossRefGoogle Scholar
  65. Platt W. J. 1974. Metabolic rates of short-tailed shrews. Physiological Zoology 47: 75–90.Google Scholar
  66. Reid F. A. 1998. A field guide to the mammals of Central America and Southeast Mexico. Oxford University Press, Oxford: 1–334.Google Scholar
  67. Roxburgh L. and Perrin M. R. 1994. Temperature regulation and activity pattern of the round-eared elephant shrewMacroscelides proboscideus (Shaw). Journal of Thermal Biology 19: 13–20.CrossRefGoogle Scholar
  68. Shkolnik A. and Schmidt-Nielsen K. 1976. Temperature regulation in hedgehogs from temperate and desert environments. Physiological Zoology 49: 56–64.Google Scholar
  69. Skarén U. 1973. Spring moult and onset of breeding season of the common shrew (Sorex araneus L.) in central Finland. Acta Theriologica 18: 443–458.Google Scholar
  70. Skarén U. 1979. Variation, breeding and moulting inSorex isodon Turov in Finland. Acta Zoologica Fennica 159: 1–30.Google Scholar
  71. Sparti A. 1990. Comparative temperature regulation of African and European shrews. Comparative Biochemistry and Physiology 97A: 391–397.Google Scholar
  72. Sparti A. and Genoud M. 1989. Basal rate of metabolism and temperature regulation inSorex coronatus andS. minutus (Soricidae: Mammalia). Comparative Biochemistry and Physiology 92A: 359–363.Google Scholar
  73. Springer M. S., Cleven G. C., Madsen O., de Jong W. W., Waddell V. G., Amrine H. M. and Stanhope M. J. 1997. Endemic African mammals shake the phylogenetic tree. Nature 388: 61–64.CrossRefPubMedGoogle Scholar
  74. Stanhope M. J., Waddell V. G., Madsen O., de Jong W., Hedges S. B., Cleven G. C., Kao D. and Springer M. S. 1998. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences, USA 95: 9967–9972.CrossRefGoogle Scholar
  75. Stephenson P. J. 1994a. Resting metabolic rate and body temperature in the aquatic tenrecLimnogale mergulus (Insectivora: Tenrecidae). Acta Theriologica 39: 89–92.Google Scholar
  76. Stephenson P. J. 1994b. Notes on the biology of the fossorial tenrec,Oryzorictes hova Insectivora: Tenrecidae). Mammalia 58: 312–315.Google Scholar
  77. Stephenson P. J. and Racey P. A. 1993a. Reproductive energetics of the Tenrecidae (Mammalia: Insectivora). I. The large-eared tenrec,Geogale aurita. Physiological Zoology 66: 643–663.Google Scholar
  78. Stephenson P. J. and Racey P. A. 1993b. Reproductive energetics of the Tenrecidae (Mammalia: Insectivora). II.The shrew-tenrecs,Microgale spp. Physiological Zoology.66: 664–685.Google Scholar
  79. Stephenson P. J. and Racey P. A. 1994. Seasonal variation in resting metabolic rate and body temperature of streaked tenrecs,Hemicentetes nigriceps andH. semispinosus (Insectivora: Tenrecidae). Journal of Zoology, London 232: 285–294.CrossRefGoogle Scholar
  80. Stephenson P. J. and Racey P. A. 1995. Resting metabolic rate and reproduction in the Insectivora. Comparative Biochemistry and Physiology 112A: 215–223.Google Scholar
  81. Symonds M. R. E. 2005. Phylogeny and life histories of the ‘Insectivora’: controversies and consequences. Biological Reviews 80: 93–128.CrossRefPubMedGoogle Scholar
  82. Symonds M. R. E. and Elgar M. A. 2002. Phylogeny affects estimation of metabolic rate scaling in mammals. Evolution 56: 2330–2333.PubMedGoogle Scholar
  83. Taylor J. R. E. 1998. Evolution of energetic strategies in shrews. [In: Evolution of shrews. J. M. Wöjcik and M. Wolsan, eds]. Mammal Research Institute, Polish Academy of Sciences, Białowieża: 309–346.Google Scholar
  84. Tieleman B. I., Williams J. B. and Bloomer P. 2003. Adaptation of metabolism and evaporative water loss along an aridity gradient. Proceedings of the Royal Society of London B 270: 207–214.CrossRefGoogle Scholar
  85. Tomasi T. E. 1985. Basal metabolic rates and thermoregulatory abilities in four small mammals. Canadian Journal of Zoology 63: 2534–2537.CrossRefGoogle Scholar
  86. Tucker V. A. 1965. The relation between the torpor cycle and heat exchange in the California pocket mousePerognathus californiens. Journal of Cellular and Comparative Physiology 65: 405–414.CrossRefGoogle Scholar
  87. van Dijk M. A. M., Madsen O., Catzeflis F., Stanhope M. J., de Jong W. W. and Pagel M. 2001. Protein sequence signatures support the African clade of mammals. Proceedings of the National Academy of Sciences, USA 98: 188–193.CrossRefGoogle Scholar
  88. Vogel P. 1976. Energy consumption of European and African shrews. Acta Theriologica 21: 195–206.Google Scholar
  89. Vogel P. 1980. Metabolic levels and biological strategies in shrews. [In: Comparative physiology: primitive mammals. K. Schmidt-Nielsen, L. Bolis, C. Richard Taylor, eds]. Cambridge University Press, Cambridge: 1–338.Google Scholar
  90. Vogel P. 1984. Verteilung des rotten Zahnschmelzes in Gebiss der Soricidae (Mammalia, Insectivora). Revue Suisse de Zoologie 91: 699–708.Google Scholar
  91. Westoby M., Leishman M. R. and Lord J. M. 1995. On mis-interpreting the ‘phylogenetic correction.’ Journal of Ecology 83: 531–534.CrossRefGoogle Scholar
  92. Whitaker J. O. Jr 1974.Cryptotis parva. Mammalian Species 43: 1–8.CrossRefGoogle Scholar
  93. White C. R. and Seymour R. S. 2003. Mammalian basal2/3 metabolic rate is proportional to body mass. Proceedings of the National Academy of Sciences, U.S.A. 100: 4046–4049.CrossRefGoogle Scholar
  94. White C. R. and Seymour R. S. 2004. Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables. Physiological and Biochemical Zoology 77: 929–941.CrossRefPubMedGoogle Scholar
  95. Whittow G. C., Gould E. and Rand D. 1977. Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat,Echinosorex gymnurus. Journal of Mammalogy 58: 233–235.CrossRefPubMedGoogle Scholar
  96. Widden H. P. 2002. Extrinsic snout musculature in Afrotheria and Lipotyphla. Journal of Mammalian Evolution 9: 161–184.CrossRefGoogle Scholar
  97. Wikelski M., Spinney L., Schelsky W., Scheuerlein A. and Gwinner E. 2003. Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proceedings of the Royal Society of London, B 270: 2383–2388.CrossRefGoogle Scholar
  98. Withers P. C. 1978. Bioenergetics of a ‘primitive’ mammal, the Cape golden mole. South African Journal of Science 74: 347–348.Google Scholar
  99. Zuck S. P., Penkrot T. A., Bloch J. I. and Rose K. D. 2005. Affinities of ‘hyopsodontids’ to elephant shrews and a holarctic origin of Afrotheria. Nature 434: 497–501.CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2006

Authors and Affiliations

  • Brian K. Mcnab
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesvilleU.S.A.

Personalised recommendations