Acta Theriologica

, Volume 49, Issue 3, pp 369–382 | Cite as

Genetic characterisation of a domestic dogCanis familiaris breed endemic to South African rural areas

  • Letitia M. Greyling
  • Paul J. Grobler
  • Herman F. Van der Bank
  • Antoinette Kotze


Allozyme electrophoresis (horizontal starch gel and PAGE) and histochemical staining techniques were used to study the genetic composition of an endemic southern African domestic dogCanis familiaris Linnaeus, 1758, the Africanis breed. Genetic differentiation was analysed at 21 protein-coding loci. The results were compared to those for three other populations/breeds: representatives of established Western breeds, crossbred dogs of Western descent from rural areas in South Africa, and indigenous Saluki dogs from the Middle East. Nine polymorphic loci were found (Ak-1,-2, Ck, Per, Hb, Po-A-1 to-3 andPo-Tf). Two unique alleles at theCk andPo-A-2 loci separated the Africanis breed from the other groups. There were also significant differences between Africanis and the other breeds in pair-wise comparisons of allelic frequencies at polymorphic loci. An assignment test, fixation index values, gene flow and genetic distance values indicated a closer genetic association between the Africanis and Saluki breeds than with dogs of Western origin. This finding supports archaeological evidence that the endemic Africanis breed was introduced from the Middle East into Africa thousands of years ago, and not through later western influences. The average heterozygosity ranged from 0.106–0.15, with least heterozygosity in the Africanis and most in the rural crossbred group. The percentage of polymorphic loci, the mean number of alleles per locus (biologically more significant than heterozygosity), and conformation of genotypes to Hardy-Weinberg proportions showed no evidence of recent loss of genetic diversity in Africanis. Genetic differentiation and support of archaeological evidence by genetics indicate that the endemic southern African domestic dog breed is unique.

Key words

Canis familiaris genetic differentiation endemic breed domestication Africanis allozyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boessneck J. 1988. Die Tierwelt des alten Ägypten. Beck, München: 1–197.Google Scholar
  2. Chappel C. A. 1968. A strandloper skeleton found at Cape St. Francis. Diastema 2: 37–39.PubMedGoogle Scholar
  3. Clutton-Brock J. 1995. Origin of the dog: domestication and early history. [In: The domestic dog, its evolution, behaviour and interactions with people. J. Serpell, ed]. Cambridge University Press, Cambridge: 7–20.Google Scholar
  4. Corbett L. 1995. The dingo in Australia and Asia. Comstock/Cornell, Ithaca, New York: 1–200.Google Scholar
  5. Cornuet J. M., Piry S., Luikart G., Estoup A. and Solignac M. 1999. New methods employing mutinous genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989–2000.PubMedGoogle Scholar
  6. Fisher R. A., Putt W. and Hackel E. 1976. An investigation of the products of 53 gene loci in three species of wild Canidae:Canis lupus, C. Latrans andC. familiaris. Biochemical Genetics 14: 963–974.CrossRefPubMedGoogle Scholar
  7. Gahne B. O., Juneja R. K. and Grolmus J. 1977. Horizontal polyacrylamide gradient gel electrophoresis for the simultaneous phenotyping of transferrin, post-transferrin, albumin and post-albumin in the blood plasma of cattle. Animal Blood Groups and Biochemical Genetics 8: 127–137.CrossRefPubMedGoogle Scholar
  8. Goncharenko G. G., Padutov V. E. and Siliin A. E. 1992. Population structure, gene diversity and differentiation in a natural population of ceder pines (Pinus subsect cembae, Pinaceae) in the USSR. Plant Systematics and Evolution 182: 121–134.CrossRefGoogle Scholar
  9. Grobler J. P. and Matlala J. M. 2002. Regional genetic variability among South African vervet monkeyChlorocebus aethiops populations. Acta Theriologica 47: 113–124.Google Scholar
  10. Grobler J. P., Taylor P., Pretorius D. M. and Anderson P. C. 1999. Fluctuating asymmetry and allozyme variation in an isolated springbok (Antidorcas marsupialis) population from the Chelmsford Nature Reserve. Acta Theriologica 44: 183–193.Google Scholar
  11. Grobler J. P. and Van der Bank F. H. 1994. Isozyme variation in South African impala (Aepyceros melampus) populations under different management regimes. South African Journal of Wildlife Research 24: 89–94.Google Scholar
  12. Hillis D. M., Moritz C. and Mable B. K. 1996. Molecular systematics (2nd edition). Sinauer Associates, Sunderland, Massachusetts, USA: 1–665.Google Scholar
  13. Hoffman M. A. 1984. Predynastic cultural ecology and patterns of settlement in Upper Egypt as viewed from Hierakonpolis. [In: Origin and early development of food producing cultures in north-eastern Africa. L. Krzyniak and M. Kobusiewicz, eds]. Polish Academy of Sciences, Poznań: 235–245.Google Scholar
  14. Hood G. 2000. POPTOOLS version 2.1. Software for analysis of ecological models, version 2.1.Google Scholar
  15. Juneja R. K., Arnold I. C. J., Gahne B. and Bouw J. 1987. Parentage testing of dogs using variants of blood proteins: description of five new plasma protein polymorphisms. Animal Genetics 18: 297–310.CrossRefPubMedGoogle Scholar
  16. Kennedy P. K., Kennedy M. L., Clarkson P. L. and Liepins I. S. 1991. Genetic variability in natural populations of the grey wolf,Canis lupus. Canadian Journal of Zoology 69: 1183–1188.CrossRefGoogle Scholar
  17. Lehman N., Eisenhawer A., Hamsen K., Mech L. D., Peterson R. O., Gogan P. J. P. and Wayne R. K. 1991. Introgression of coyote mitochondrial DNA into sympatric North American gray wolf populations. Evolution 45: 104–119.CrossRefGoogle Scholar
  18. Leberg P. L. 1992. Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46: 477–494.CrossRefGoogle Scholar
  19. Markert C. L. and Faulhaber I. 1965. Lactate dehydrogenase pattens of fish. Journal of Experimental Zoology 159: 319–332.CrossRefPubMedGoogle Scholar
  20. Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedGoogle Scholar
  21. Nei M. 1986. Definition and estimation of fixation indices. Evolution 40: 643–645.CrossRefGoogle Scholar
  22. Olson S. J. 1985. Origins of the domestic dog. University of Arizona Press, Tucson, Arizona: 1–118.Google Scholar
  23. Olson S. J. and Olson J. W. 1977. The Chinese wolf ancestor of the New World dogs. Science 197: 533–535.CrossRefGoogle Scholar
  24. Ota T. 1993. DISPAN: genetic distance and phylogenetic analysis. Pennsylvania State University, USA.Google Scholar
  25. Plug I. 1996. Domestic animals during the Early Iron Age in southern Africa. [In: Aspects of African archaeology. Pwiti G. and Soper R., eds]. University of Zimbabwe Publications, Harare: 21–26.Google Scholar
  26. Raymond M. and Rousset F. 1997. GENEPOP (Version 3.1b). Population genetics software for exact tests and ecumenicism.Google Scholar
  27. Ridgway G., Sherburne S. W. and Lewis R. D. 1970. Polymorphism in the esterases of Atlantic herring. Transactions of the American Fisheries Society 99: 147–151.CrossRefGoogle Scholar
  28. Roubet C. and Carter P. L. 1984. La domestication dans le Magreb: état de la question. [In: Origin and early development of food producing cultures in north-eastern Africa. L. Krzyniak and M. Kobusiewicz, eds]. Polish Academy of Sciences, Poznań: 437–452.Google Scholar
  29. Swofford D. L., Black W. L. and Selander R. B. 1997. BIOSYS-2. Department of Microbiology, Colorado University.Google Scholar
  30. Takahata N. 1982. Gene identity and genetic differentiation of populations in the finite island model. Genetics 104: 497–512.Google Scholar
  31. Tanabe Y., Ôta K., Ito S., Hashimoto Y., Sung Y. Y., Ryu J. K. and Faruque M. O. 1991. Biochemical-genetic relationships among Asian and European dogs and the ancestry of the Japanese native dog. Journal of Animal Breeding and Genetics 108: 455–478.CrossRefGoogle Scholar
  32. Van der Bank F. H. 2002. A review of gene nomenclature for enzyme-coding loci generally used in allozyme studies. Trends in Comparative Biochemistry and Physiology 9: 197–203.Google Scholar
  33. Van Schalkwyk L. 1994. Wosi: an early iron age village in the lower Thukela Basin, Natal. Natal Museum Journal of Humanities 6: 65–117.Google Scholar
  34. Vilà C., Maldonado J. E. and Wayne R. K. 1999. Phylogenetic relationships, evolution and genetic diversity in the domestic dog. Journal of Heredity 90: 71–77.CrossRefPubMedGoogle Scholar
  35. Vilà C., Savolainen P., Maldonado J. E., Amorim I. R., Rice J. E., Honeycutt R. L., Crandall K. A., Lundeberg J. and Wayne R. K. 1997. Multiple and ancient origins of the domestic dog. Science 276: 1687–1689.CrossRefPubMedGoogle Scholar
  36. Voigt E. A. 1983. Mapungubwe — an archaeozoological interpretation of an Iron Age community. Transvaal Museum, Pretoria: 1–204.Google Scholar
  37. Von Petters V. 1934. Beitrag zur Kenntnis der Südaafrikanischen Hauskunde. Zeitschrift für Säugetierkunde 9: 142–163.Google Scholar
  38. Wayne R. K. 1986. Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 40: 243–261.CrossRefGoogle Scholar
  39. Wayne R. K. 1993. Molecular evolution of the dog family. Trends in Genetics 9: 218–224.CrossRefPubMedGoogle Scholar
  40. Whitt G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. Journal of Experimental Biology 175: 1–35.Google Scholar
  41. Wright S. 1978. Evolution and the genetics of populations, Vol. 4. Variability within and among natural populations. University of Chicago, Chicago: 1–439.Google Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2004

Authors and Affiliations

  • Letitia M. Greyling
    • 1
  • Paul J. Grobler
    • 2
  • Herman F. Van der Bank
    • 1
  • Antoinette Kotze
    • 3
  1. 1.Department of ZoologyRand Afrikaans UniversityJohannesburgSouth Africa
  2. 2.Department of Biodiversity, School of Molecular and Life SciencesUniversity of the NorthSovengaSouth Africa
  3. 3.Animal Improvement InstituteAgricultural Research CouncilIreneSouth Africa

Personalised recommendations