Mycotoxin Research

, Volume 8, Issue 2, pp 77–83 | Cite as

DNA strand break induction, mutagenicity, and cytotoxicity of the mycotoxins 11-β-hydroxy-7-deoxy-rosenonolactone, rosenonolactone, and trichothecin

  • Hengstler J G 
  • Löffler S 
  • Schaefer M 
  • Glatt H R 
  • Fuchs J 
  • Flesch P 
  • Oesch F 


11-β-hydroxy-7-deoxy-rosenonolactone (TSS1), a mycotoxin of the rosenane class, was tested on cytotoxicity, induction of DNA single strand breaks and muta-genicity. Its effects were compared to those of rosenonolactone and trichothecin. TSS1 had stronger antibiotic activity againstEscherichia coli (EC 50: 10μg/mL) than rosenonolactone (EC 50: >200μg/mL) but weaker activity than trichothecin (EC 50: 3μg/mL). The same order of activity was found for the inhibition of yeast fermentation (EC 50 of TSS1: 45μg/mL; EC 50 of rosenonolactone: > 120μg/mL; EC 50 of trichothecin: 3.4μg/mL).

In the trypan blue exclusion test using V79 Chinese hamster cells, TSS1 proved to be cytotoxic (EC50: 30μg/mL) at even lower doses than trichothecin (EC50: 200μg/mL). Rosenonolactone had no significant toxicity up to the highest soluble concentration (500μg/mL).

DNA single strand breaks caused by TSS1 occurred at the same concentrations at which damage of the cell membrane became apparent. For trichothecin single strand breaks were detected only at concentrations at which the membrane was already highly damaged. No single strand breaks were observed in V79 cells after incubation with rosenonolactone up to the limit of solubility (500μg/mL).

In the reversion assay withhis Salmonella typhimurium strains TA 98 and TA 100, no mutagenicity was observed for any of the examined mycotoxins up to 800μg/plate with and without the addition of a rat liver preparation for metabolism of the test compound.


Mycotoxin Research Trypan Blue Exclusion Test Elution Rate Alkaline Elution Trichothecin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schäfer M, Hengstler J, Löffler S, Flesch P (1990) Isolation, identification and toxicological characterisation of TSS1, a new mycotoxin of the rosenane class. Mycotox Res 6:21–30CrossRefGoogle Scholar
  2. 2.
    Bamburg JR, Strong FM (1971) Microbial Toxins (Eds: Kadis S, Ciegler A, Ail SJ). Academic Press, New York, 199Google Scholar
  3. 3.
    Ellestad GA, Green B, Harris A, Whalley WB, Smith H (1965) The chemistry of fungi, Part L, Rosenonolactone. J Chem Soc 7246–7256Google Scholar
  4. 4.
    Kohn KW, Ewig RAG, Erickson LC, Zwelling LA (1980) Measurement of strand breaks and cross-links by alkaline elution. In: DNA Repair (Eds: Friedberg EC, Hanawalt PC). Marcel Dekker, New York, 379–401Google Scholar
  5. 5.
    Stout DL, Becker FF (1982) Fluorometric quantitation of single-stranded DNA: A method applicable to the technique of alkaline elution. Anal Biochem 127:302–307PubMedCrossRefGoogle Scholar
  6. 6.
    Cesarone CF, Bolognesi C, Santi L (1979) Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem 100:188–197PubMedCrossRefGoogle Scholar
  7. 7.
    Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res 113:173–215PubMedGoogle Scholar
  8. 8.
    Glatt HR, Eich E, Pertz H, Becker C, Oesch F (1987) Mutagenicity experiments on agroclavines, new natural antineoplastic compounds. Cancer Res 47:1811–1814PubMedGoogle Scholar
  9. 9.
    Glatt HR, Piée A, Pauly K, Steinbrecher T, Schrode R, Oesch F, Seidel A (1991) Fiord-and bay-region diol-epoxides investigated for stability, SOS induction inEscherichia coli, and mutagenicity inSalmonella typhimurium and mammalian cells. Cancer Res 51:1659–1667PubMedGoogle Scholar
  10. 10.
    Freeman GG (1955) Further biological properties of trichothecin, an anti-fungal substance fromTrichothecium roseum Link, and its derivatives. J Gen Microbiol 12:213–221PubMedGoogle Scholar
  11. 11.
    Grove JF, Mortimer PH (1968) The cytotoxicity of some transformation products of diacetoxyscirpenol. Biochem Pharmacol 18:1473–1478CrossRefGoogle Scholar
  12. 12.
    Bamburg JR (1972) The biological activities and detection of naturally occurring 12,13-epoxy-trichothecenes. Clin Toxicol 5:495–515PubMedCrossRefGoogle Scholar
  13. 13.
    Glatt HR, Gemperlein I, Turchi G, Heinritz H, Doehmer J, Oesch F (1987) Search for cell culture systems with diverse xenobiotic-metabolizing activities and their use in toxicological studies. Mol Toxicol 1:313–334PubMedGoogle Scholar
  14. 14.
    Williams JR, Little JB, Shipley WU (1974) Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature 252:754–755PubMedCrossRefGoogle Scholar
  15. 15.
    Orrenius S, McConkey DJ, Nicotera P (1989) Role of calcium in oxidative cell injury.In: Cell Calcium Metabolismus (Ed: Fiskum G) Plenum Publ Corporation, New York, 451–461Google Scholar
  16. 16.
    Flesch P, Schaefer M, Stockinger G, Voigt-Scheuermann I (1990) Über die Kontamination von Traubenmost und Wein mit Toxinen bei Verarbeitung vonTrichothecium roseum befallenem Lesegut. Die Weinwiss 45:141–145Google Scholar
  17. 17.
    Voigt-Scheuermann I (1989) Isolierung und Identifizierung von Toxinen aus Laborkulturen verschiedener Stämme des PilzesTrichothecium roseum. Ph D Thesis, University of Mainz, FRG, 156–163Google Scholar

Copyright information

© Society of Mycotoxin Research and Springer 1992

Authors and Affiliations

  • Hengstler J G 
    • 1
  • Löffler S 
    • 1
  • Schaefer M 
    • 3
  • Glatt H R 
    • 1
  • Fuchs J 
    • 1
  • Flesch P 
    • 2
  • Oesch F 
    • 1
  1. 1.Institut für ToxikologieUniversität MainzMainzFRG
  2. 2.Institut für BiochemieUniversität MainzMainzFRG
  3. 3.Bayer Diagnostic GmbHMünchen 90FRG

Personalised recommendations