Skip to main content
Log in

The Hull-White model and multiobjective calibration with consistent curves: empirical evidence

El modelo de Hull-White y la calibración multiobjetivo con curvas consistentes: Evidencia empírica

  • Published:
RACSAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

We present a new methodology for the calibration of the Hull-White model to US market prices with consistent curves. It falls into the general class of nonlinear multicriteria optimization problems and we show how this algorithm is able to build a set of dicrete Pareto points of the implied trade-off curve. We also evaluate its fitting capabilities against non-consistent traditional methods with very promising results.

Resumen

El objetivo de este trabajo es la presentación de una nueva metodología para la calibración del modelo de Hull-White mediante el empleo de curvas consistentes, y tomando como datos empíricos los precios del mercado norteamericano. La base de nuestra propuesta está basada en el empleo de una clase de problemas de optimización multicriterio no lineales. Comparamos además, la capacidad de ajuste del algoritmo frente a los métodos tradicionales, basados en el uso de curvas no consistentes, obteniendo unos resultados que avalan la eficiencia de la metodología propuesta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelini, F. and Herzel, S., (2002). Consistent Initial Curves for Interest Rate Models, Journal of Derivatives, 9(4), 8–18.

    Article  Google Scholar 

  2. Angelini, F. and Herzel, S., (2005). Consistent Calibration of HJM Models to Cap Implied Volatilities, Journal of Future Markets, 25, 1093–1120.

    Article  Google Scholar 

  3. BIS. Zero-coupon yield curves: Technical documentation, BIS Papers, 25. Bank for International Settlements, Basle, October 2005.

    Google Scholar 

  4. Björk, T., (2001). A Geometric View of Interest Rate Theory, in: Jouini, E., Cvitanic, J. and Musiela, M., Option Pricing, Interest Rates and Risk Management, Cambridge University Press.

  5. Björk, T., (2003). On the Geometry of Interest Rate Models, in: Carmona, R. A., Cinlar, E., Ekeland, I., Jouini, E., Scheinkman, J. A. and Touzi, N., Paris-Princeton Lectures on Mathematical Finance 2003, Lecture Notes in Mathematics, 1847, Springer-Verlag.

  6. Björk, T., (2004). Arbitrage Theory in Continuous Time, Second Edition, Oxford.

  7. Björk, T. and Christensen, B. J., (1999). Interest Rate Dynamics and Consistent Forward Rate Curves, Math. Finance, 9, 323–348.

    Article  MATH  MathSciNet  Google Scholar 

  8. Björk, T. and Landen, C., (2002). On the construction of finite dimensional realizations for nonlinear forward rate models, Finance Stoch., 6(3), 303–331.

    Article  MathSciNet  Google Scholar 

  9. Black, F., (1976). The Pricing of Commodity Contracts, Journal of Financial Economics3, 167–179.

    Article  Google Scholar 

  10. Black, F. and Karasinski, P., (1991). Bond and Option Pricing when Short Rates are Lognormal, Financial Analysts Journal, 4, 52–59. 127–155.

    Article  Google Scholar 

  11. Buraschi, A. and Corielli, F., (2005). Risk Management Implications of Time-Inconsistency: Model Updating and Recalibration of No-Arbitrage Models. Journal of Banking and Finance, 29, 2883–2907.

    Article  Google Scholar 

  12. Das, I. and Dennis, J. E., (1998). Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems, SIAM J. Optim., 8(3), 631–657.

    Article  MATH  MathSciNet  Google Scholar 

  13. De Rossi, G., (2004). Kalman Filtering of Consistent Forward Rate Curves: a Tool to Estimate and Model Dynamically the Term Structure, Journal of Empirical Finance, 11, 277–308.

    Article  Google Scholar 

  14. Eschenauer, H., Koski, J. and Osyczka, A., (1990). Multicriteria Design Optimization, Springer.

  15. Filipovic, D., (1999). A Note on the Nelson and Siegel Family. Math. Finance, 9(4), 349–359.

    Article  MATH  MathSciNet  Google Scholar 

  16. Heath, D. C., Jarrow, R. and Morton, A., (1992). Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation, Econometrica, 60(1), 77–105.

    Article  MATH  Google Scholar 

  17. Ho, T. S. Y. and Lee, S. B., (1986). Term Structure Movements and the Pricing of Interest Rate Contingent Claims. Journal of Financial and Quantitative Analysis41, 1011–1029.

    Google Scholar 

  18. Hull, J. and White, A., (1990). Pricing Interest Rate Derivatives Securities. The Review of Financial Studies, 3(4), 573–592.

    Article  Google Scholar 

  19. Kloeden, P. E. and Platen, E., (1999). Numerical solution of stochastic differential equations, Springer-Verlag.

  20. Musiela, M., (1993) Stochastic PDEs and term structure models. Working Paper, J. Intern. Finance, IGR-AFFI, La Baule.

    Google Scholar 

  21. Nelson, C. R. and Siegel, A. F., (1987). Parsimonious Modelling of Yield Curves. Journal of Business, 60(4), 473–489.

    Article  Google Scholar 

  22. Vasicek, O., (1977). An Equilibrium Characterization of the Term Structure. Journal of Financial Economics, 5, 177–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falcó, A., Navarro, L. & Nave, J. The Hull-White model and multiobjective calibration with consistent curves: empirical evidence. Rev. R. Acad. Cien. Serie A. Mat. 103, 235–249 (2009). https://doi.org/10.1007/BF03191944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191944

Keywords

Mathematics Subject Classifications

Navigation