Martingales and arbitrage: a new look



This paper addresses the equivalence between the absence of arbitrage and the existence of equivalent martingale measures. The equivalence will be established under quite weak assumptions since there are no conditions on the set of trading dates (it may be finite or countable, with bounded or unbounded horizon, etc.) or on the trajectories of the price process (for instance, they do not have to be right-continuous).

Besides we will deal with arbitrage portfolios rather than free-lunches. The concept of arbitrage is much more intuitive than the concept of free lunch and has more clear economic interpretation. Furthermore it is more easily tested in theoretical models or practical applications.

In order to overcome the usual mathematical difficulties arising when dealing with arbitrage strategies, the set of states of nature will be widened by drawing on projective systems of Radon probability measures, whose projective limit will be the martingale measure. The existence of densities between the “real” probabilities and the “risk-neutral” probabilities will be guaranteed by introducing the concept of “projective equivalence”. Hence some classical counter-examples will be solved and a complete characterization of the absence of arbitrage will be provided in a very general framework.


Arbitrage martingale measure projective system 

Mathematics Subject Classifications

91B28 91B70 

Martingalas y arbitraje: un nuevo enfoque


Analizaremos la equivalencia entre la ausencia de arbitraje y la existencia de una medida de martingala. Esta equivalencia se establecerá bajo supuestos débiles, puesto que no hay condiciones sobre el conjunto de fechas de negociación (puede ser finito o contable, con horizonte acotado o no acotado, etc.) ni sobre las trayectorias del proceso de precios (por ejemplo, no tienen que ser continuas por la derecha).

Trabajaremos con el concepto de arbitraje, y no con el defree-lunch. La noción de arbitraje es mucho más intuitiva y tiene una interpretación económica mucho más clara, además de ser más fácil de verificar en las aplicaciones prácticas.

Para salvar dificultades matemáticas, extenderemos el conjunto de estados de la naturaleza mediante el uso de sistemas proyectivos de probabilidades regulares (de Radon), cuyo láimite proyectivo será la medida de martingala. La existencia de densidades entre las «probabilidades reales » y las «neutrales al riesgo» se garantizará mediante la introducción del concepto de «equivalencia proyectiva». Algunos contra-ejemplos clásicos serán resueltos, y una caracterización completa de la ausencia de arbitraje será presentada en un contexto muy general.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Artzner, P., Delbaen, F., Eber, J. M. andHeath, D., (1999). Coherent measures of risk,Math. Finance,9, 3, 203–228.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Back, K. andPliska, S. R., (1991). On the fundamental theorem of asset pricing with an infinite state space,J. Math. Econom.,20, 1–18.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Balbás, A., Balbás, R. andMayoral, S., (2007). Risk-neutral valuation with infinitelymany trading dates,Mathematical & Computer Modelling,45, 11, 1308–1318.MATHCrossRefGoogle Scholar
  4. [4]
    Balbás, A. andDownarowicz, A., (2007). Infinitely many securities and the fundamental theorem of asset pricing,Mediterr. J. Math.,4, 3, 321–341.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Balbás, A., Mirás, M. andMuñoz-Bouzo, M. J., (2002). Projective system approach to the martingale characterization of the absence of arbitrage,J. Math. Econom.,37, 4, 311–323.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Bourbaki, N., (1969).Éléments de mathématique Chapitre IX, Intégration, Diffusion C.C.L.S., Paris.Google Scholar
  7. [7]
    Castagnoli, E., Maccheroni, F. andMarinacci, M., (2004). Choquet insurance pricing: A caveat,Math. Finance,14, 3, 481–485.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Chamberlain, G. andRothschild, M., (1983). Arbitrage, factor structure, and mean-variance analysis on large assets,Econometrica,51, 1281–1304.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Chateauneuf, A., Kast, R. andLapied, A., (1996). Choquet pricing for financial markets with frictions,Math. Finance,6, 3, 323–330.MATHCrossRefGoogle Scholar
  10. [10]
    Clark, S. A., (1993). The valuation problem in arbitrage price theory,J. Math. Econom.,22, 5, 463–478.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Dalang, R. C., Morton, A. andWillinger, W., (1990). Equivalent martingale measures and no-arbitrage in stochastic securities market models,Stochastics and Stochastic Reports,29, 185–201.MATHMathSciNetGoogle Scholar
  12. [12]
    De Waegenaere, A., Kast, R. andLapied, A., (2003). Choquet pricing and equilibrium,Insurance Math. Econom.,32, 359–370.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Delbaen, F. andSchachermayer, W., (1998). The fundamental theorem of asset pricing for unbounded stochastic processes,Math. Ann.,312, 2, 215–250.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Föllmer, H. andSchachermayer, W., (2008). Asymptotic arbitrage and large deviations,Math. Financ. Econ.,1, 3, 213–249.MATHCrossRefGoogle Scholar
  15. [15]
    Hansen, L. P. andJagannathan, R., (1997). Assessing specification errors in stochastic discount factor models,The Journal of Finance,52, 2, 567–590.CrossRefGoogle Scholar
  16. [16]
    Harrison, J. andKreps, D., (1979). Martingales and arbitrage in multiperiod securities markets,Journal of Economic Theory,20, 381–408.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Jacod, J. andShiryaev, A., (1998). Local martingales and the fundamental asset pricing theorems in the discrete-time case,Finance Stoch.,2, 3, 259–273.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Jouini, E. andKallal, H., (1995). Martingales and arbitrage in securities markets with transaction costs,Journal of Economic Theory,66, 178–197.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Kelley, J., (1955).General topology, D. Van Norstrand Company Ind. New York.MATHGoogle Scholar
  20. [20]
    Kopp, P. E., (1984).Martingales and stochastic integrals, Cambridge University Press, Cambridge.MATHGoogle Scholar
  21. [21]
    Musial, K., (1980). Projective limits of perfect measure spaces,Fund. Math.,40, 163–189.MathSciNetGoogle Scholar
  22. [22]
    Schachermayer, W., (1992). A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time,Insurance Math. Econom.,11, 4, 249–257.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Schachermayer, W., (1994). Martingale measures for discrete-time processes with infinite horizon,Math. Finance,4, 1, 25–55.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Schwartz, L., (1973).Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press. London.MATHGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Académico Correspondiente de la Real Academia de CienciasUniversidad Carlos III de MadridGetafe, Madrid(Spain)
  2. 2.Académico de Número de la Real Academia de CienciasUNED, Departamento de Matemáticas FundamentalesMadrid(Spain)

Personalised recommendations