Collectanea mathematica

, Volume 61, Issue 2, pp 151–171 | Cite as

b-weighted dyadic BMO from dyadic BMO and associatedT(b) theorems

  • Stephanie Anne Salomone


Given a functionb, and using adapted Haar wavelets, we define a BMO-type norm which is dependent onb. In both global and local cases, we find the dependence of the bounds on ∥f∥BMO by the bounds on theb-weighted BMO norm off. We show that the dependence is sharp in the global case. Multiscale analysis is used in the local case. We formulate as corollaries global and local dyadicT(b) theorems whose hypotheses include a bound on theb-weighted BMO-norm ofT *(1).


T(b) BMO dyadic multiscale analysis Haar wavelets adapted Haar wavelets 


42B20 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and Ph. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on ℝn,Ann. of Math. (2)156, (2002) 633–654.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Auscher, S. Hofmann, C. Muscalu, T. Tao, and C. Thiele, Carleson measures, trees, extrapolation, andT(b) theorems,Publ. Mat. 46 (2002), 257–325.MATHMathSciNetGoogle Scholar
  3. 3.
    M. Christ, AT(b) theorem with remarks on analytic capacity and the Cauchy Integral,Colloq. Math. 60/61 (1990), 601–628.Google Scholar
  4. 4.
    M. Christ,Lectures on Singular Integral Operators, CBMS Regional Conference Series in Mathematics77, American Mathematical Society, Providence, RI, 1990.MATHGoogle Scholar
  5. 5.
    R.R. Coifman, P.W. Jones, and S. Semmes, Two elementary proofs of theL 2 boundedness of Cauchy integrals on Lipschitz curves,J. Amer. Math. Soc. 2 (1989), 553–564.MATHMathSciNetGoogle Scholar
  6. 6.
    G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators,Ann. of Math. (2)120 (1984), 371–397.CrossRefMathSciNetGoogle Scholar
  7. 7.
    G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions paraaccrétives et interpolation,Rev. Mat. Iberoamericana 1 (1985), 1–56.MATHGoogle Scholar
  8. 8.
    C. Fefferman, Recent progress in classical Fourier analysis,Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), 95–118, Montreal, 1975.Google Scholar
  9. 9.
    J. Garnett and P. Jones, BMO from dyadic BMO,Pacific J. Math. 99 (1982), 351–371.MATHMathSciNetGoogle Scholar
  10. 10.
    G. Folland,Real Analysis: Modern Techniques and Their Applications (2nd edition), Pure and Applied Mathematics, New York, 1999.MATHGoogle Scholar
  11. 11.
    S. Molnar,Sharp growth estimates for T(b) theorems, Ph.D. thesis, UCLA, 2005.Google Scholar
  12. 12.
    F. Nazarov, S. Treil, and A. Volberg, AccretiveT(b) theorems on nonhomogeneous spaces,Duke Math. J. 113 (2002), 259–312.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Salomone, Sharp growth estimates for dyadicb-inputT(b) theorems,Publ. Mat. 52 (2008), 267–287.MathSciNetGoogle Scholar
  14. 14.
    E. Stein,Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series43, Monographs in Harmonic Analysis III, Princeton University Press, Princeton, NJ, 1993.MATHGoogle Scholar
  15. 15.
    X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity,Acta Math. 190 (2003), 105–149.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Verdera, personal communication.Google Scholar

Copyright information

© Universitat de Barcelona 2010

Authors and Affiliations

  1. 1.University of PortlandPortland

Personalised recommendations