Genes & Genomics

, Volume 31, Issue 4, pp 315–323 | Cite as

Organization and analysis of the histidine biosynthetic genes fromCorynebacterium glutamicum

  • Samil Jung
  • Jae-Yeon Chun
  • Sei-Heun Yim
  • Choong-Il Cheon
  • Ensook Song
  • Soo-Suk Lee
  • Myeong-Sok Lee


Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for industrial amino acid production. In addition to our previously clonedhisEG andhisHA-impA-hisFI genes, the remaininghisDCB genes were cloned in this study. The entireC. glutamicum histidine biosynthesis genes, when compared with those of other microorganisms, showed high degree of similarities in deduced amino acid sequences but also significant differences in gene organization. Transcription analysis by RT-PCR revealed thatC. glutamicum his genes are located and transcribed in two unlinked loci,hisEG andhisDCB-orf1-orf2-hisHA-impA-hisFI. The primer extension analysis showed that the latterhis operon starts the transcription at C residue localized 196-bp upstream of thehisD ATG start codon. Genetic analysis inhisD promoter region showed the putative Pribnow boxes, TTTAAT and CAGTAT at 7 and 31 upstream ofhisD gene transcription start site. Further analysis revealed Shine-Dalgarno sequence, AGGGAG, at 10-bp upstream ofhisD translational start codon. Our result also suggests that the histidine biosynthesis inC. glutamicum is negatively regulated by their end-product, histidine, suggesting the histidine-dependent regulation ofhis gene transcription.

Key words

Corynebacterium glutamicum histidine biosynthesis genes gene organization transcriptional unit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alifano P, Fani R, Lio P, Lazcano A, Bazzicalupo M, Carlomagno MS andBruni CB (1996) Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol. Rev. 60: 44–69.PubMedGoogle Scholar
  2. Beckler GS andReeve JN (1986) Conservation of primary structure in the hisI gene of the archaebacterium, Methanococcus vannielii, the eubacterium Escherichia coli, and the eucaryote Saccharomyces cerevisiae. Mol. Gen. Genet. 204: 133–140.CrossRefPubMedGoogle Scholar
  3. Blasi F andBruni CB (1981) Regulation of the histidine operon: translation-controlled transcription termination (a mechanism common to several biosynthetic operons). Curr. Top. Cell Regul. 19: 1–45.PubMedGoogle Scholar
  4. Broach JR (1981) Genes ofSaccharomyces cerevisiae. InThe molecular biology of the yeast Saccharomyces: life cycle and inheritance, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 653–727.Google Scholar
  5. Carlomagno MS, Chiariotti L, Alifano P, Nappo AG andBruni CB (1988) Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J. Mol. Biol. 203: 585–606.CrossRefPubMedGoogle Scholar
  6. Charlebois RL, Sensen CW, Doolittle WF andBrown JR (1997) Evolutionary analysis of the hisCGABdF DEHI gene cluster from the archaeon Sulfolobus solfataricus P2. J. Bacteriol. 179: 4429–4432.PubMedGoogle Scholar
  7. Chomczynski P andSacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.CrossRefPubMedGoogle Scholar
  8. Delorme C, Ehrlich SD andRenault P (1992) Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J. Bacteriol. 174: 6571–6579.PubMedGoogle Scholar
  9. Donahue TF, Farabaugh PJ andFink GR (1982) The nucleotide sequence of the HIS4 region of yeast. Gene 18: 47–59.CrossRefPubMedGoogle Scholar
  10. Fani R, Alifano P, Allotta G, Bazzicalupo M, Carlomagno MS, Gallori E, Rivellini F andPolsinelli M (1993) The histidine operon of Azospirillum brasilense: organization, nucleotide sequence and functional analysis. Res. Microbiol. 144: 187–200.CrossRefPubMedGoogle Scholar
  11. Fani R, Bazzicalupo M, Damiani G, Bianchi A, Schipani C, Sgaramella V andPolsinelli M (1989) Cloning of histidine genes of Azospirillum brasilense: organization of the ABFH gene cluster and nucleotide sequence of the hisB gene. Mol. Gen. Genet. 216: 224–229.CrossRefPubMedGoogle Scholar
  12. Fani R, Brilli M andLio P (2005) The origin and evolution of operons: the piecewise building of the proteobacterial histidine operon. J. Mol. Evol. 60: 378–390.CrossRefPubMedGoogle Scholar
  13. Fani R, Lio P andLazcano A (1995) Molecular evolution of the histidine biosynthetic pathway. J. Mol. Evol. 41: 760–774.CrossRefPubMedGoogle Scholar
  14. Guillouet S andEngasser JM (1995) Sodium and proline accumulation inCorynebacterium glutamicum as a response to an osmotic saline upshock. Appl. Microbiol. Biotechnol. 43: 315–320.CrossRefGoogle Scholar
  15. Henner DJ, Band L, Flaggs G andChen E (1986) The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes. Gene 49: 147–152.CrossRefPubMedGoogle Scholar
  16. Ikeda M andNakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99–109.CrossRefPubMedGoogle Scholar
  17. Jung SI, Han MS, Kwon JH, Cheon CI, Min KH andLee MS (1998) Cloning of the histidine biosynthetic genes of Corynebacterium glutamicum: organization and sequencing analysis of the hisA, impA, and hisF gene cluster. Biochem. Biophys. Res. Commun. 247: 741–745.CrossRefPubMedGoogle Scholar
  18. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns B, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I andTauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5–25.CrossRefPubMedGoogle Scholar
  19. Kim JY andLee MS (2001) Molecular cloning and analysis of the hisH gene encoding Glutamate amidotransferase from Corynebacterium glutamicum. Korean J. Genetics 23: 121–127.Google Scholar
  20. Kinoshita S (1985) Glutamic acid bacteria. InBiology of Industrial Microorganisms, Demain A.L. and Solomon N.A., des., Benjamin Commings, London, pp. 115–142.Google Scholar
  21. Kwon JH, Chun JY, Lee HS, Cheon CI, Song ES, Min KH andLee MS (2000) Cloning of the histidine biosynthetic genes from Corynebacterium glutamicum: organization and analysis of the hisG and hisE genes. Can. J. Microbiol. 46: 848–855.CrossRefPubMedGoogle Scholar
  22. Lee HS andSinskey AJ (1994) Molecular Characterization of AceB, a Gene Encoding Malate Synthase in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 4: 256–263.Google Scholar
  23. Legerton TL andYanofsky C (1985) Cloning and characterization of the multifunctional his-3 gene of Neurospora crassa. Gene 39: 129–140.CrossRefPubMedGoogle Scholar
  24. Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem. Sci. 19: 119–123.CrossRefPubMedGoogle Scholar
  25. Limauro D, Avitabile A, Cappellano C, Puglia AM andBruni CB (1990) Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gene 90: 31–41.CrossRefPubMedGoogle Scholar
  26. Marger MD andSaier MH Jr (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18: 13–20.CrossRefPubMedGoogle Scholar
  27. Martin JF (1989) Molecular genetics of amino acidsproducing Corynebacteria. InMicrobial products: new approaches, Baumberg S., Hunter I. and Rhodes M., eds., Cambridge University Press, Cambridge, UK, pp. 25–59.Google Scholar
  28. Mormann S, Lomker A, Ruckert C, Gaigalat L, Tauch A, Puhler A andKalinowski J (2006) Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 7: 205.CrossRefPubMedGoogle Scholar
  29. Nagai A, Ward E, Beck J, Tada S, Chang JY, Scheidegger A andRyals J (1991) Structural and functional conservation of histidinol dehydrogenase between plants and microbes. Proc. Natl. Acad. Sci. USA 88: 4133–4137.CrossRefPubMedGoogle Scholar
  30. Patek M, Eikmanns BJ, Patek J andSahm H (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142: 1297–1309.CrossRefPubMedGoogle Scholar
  31. Sambrook J andRussel D (2001)Molecular Cloning: A laboratory Manual. Cold Spring Harbor, New York.Google Scholar
  32. Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214: 1205–1210.CrossRefPubMedGoogle Scholar
  33. Wolfgang L, Rosemarie K andSchleifer KH (1989) Requirement of chelating compounds for the growth ofCorynebacterium glutamicum in synthetic media. Appl. Microbiol. Biotechnol. 32: 205–210.CrossRefGoogle Scholar
  34. Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Follettie MT, Walker GC andSinskey AJ (1985) Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162: 591–597.PubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea & Springer 2009

Authors and Affiliations

  • Samil Jung
    • 1
  • Jae-Yeon Chun
    • 1
  • Sei-Heun Yim
    • 1
  • Choong-Il Cheon
    • 1
  • Ensook Song
    • 1
  • Soo-Suk Lee
    • 2
  • Myeong-Sok Lee
    • 1
  1. 1.Division of Biological Science and Research Center for Women’s DiseasesSookmyung Women’s UniversitySeoulKorea
  2. 2.Samsung Advanced Institute of TechnologySuwonKorea

Personalised recommendations