Bioequivalence testing of a new tablet formulation of generic fluoxetine

  • D. Jovanović
  • V. Kilibarda
  • S. Dordević
  • M. Jovanović
  • J. Jović-Stošić
  • D. Srdić
  • T. Knežević


The pharmacokinetics and relative bioavailability of fluoxetine capsules (reference) and tablets (test) were compared in 24 healthy subjects of both sexes after a single 20 mg oral dose of fluoxetine (as a hydrochloride salt).

A randomized, crossover design with a 2-week wash-out period between each dose was applied. Serum samples, obtained before dosing and at various appropriate time points up to 192 hours, were analyzed for fluoxetine and norfluoxetine content by a simple, accurate and precise HPLC method. ANOVA, power analysis, 90% confidence intervals (CI), and two one-sided tests were used for the statistical analysis of pharmacokinetic parameters.

The tolerability of the preparations was good. The respective point estimates of the ratios of the geometric means of log-Cmax and log-AUC0−∞ of fluoxetine were 0.912 and 0.935 with 90% of 0.838–0.992 and 0.857–1.020. The corresponding point estimates of norfluoxetine were 0.952 (90% CI=0.843−1.075) and 0.904 (90% CI=0.807−1.013), respectively.

Since both 90% CI for the AUC0−∞ and Cmax geometric mean ratios of fluoxetine and norfluoxetine were included in the 80% to 125% interval proposed by the FDA the test drug (fluoxetine tablets) was considered bioequivalent to the reference one (Prozac® capsules) according both to the rate and extent of absorption.


bioequivalence generic drugs fluoxetine norfluoxetine relative bioavailability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemberger L., Bergestrom R.F., Wolen R.L., Farid N.A., Enas G.G., Aronoff G.R. (1985): Fluoxetine: clinical pharmacology and physiologic disposition. J. Clin. Psychiatry 46, 14–19.PubMedGoogle Scholar
  2. 2.
    Benfield P., Heel R.C., Lewis S.P. (1986): Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficiency in depressive illness. Drugs, 32, 481–508.CrossRefPubMedGoogle Scholar
  3. 3.
    Altamura A.C., Moro A.R., Percudani M. (1994): Clinical pharmacokinetics of fluoxetine. Clin. Pharmacokinet., 26, 201–204.CrossRefPubMedGoogle Scholar
  4. 4.
    Aronofrf G.R., Bergstrom R.F., Pottratz S.T., Sloan R.S., Wolen R.L., Lemberger L. (1984): Fluoxetine kinetics and protein binding in normal and impaired renal function. Clin. Pharmacol. Ther., 36, 138–144.Google Scholar
  5. 5.
    Kristensen J.H., Ilett K.F., Hackett L.P., Yapp P., Paech M., Begg E.J. (1999): Distribution and excretion of fluoxetine and norfluoxetine in human milk. Br. J. Clin. Pharmacol., 48, 521–527.CrossRefPubMedGoogle Scholar
  6. 6.
    Liu Z.Q., Cheng Z.N., Huang S.L., Chen X.P., Ou-Yang D.S., Jiang C.H., Zhou H.H. (2001): Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br. J. Clin. Pharmacol. 52, 96–99.CrossRefPubMedGoogle Scholar
  7. 7.
    Jannuzzi G., Gatti G., Magni P., Spina E., Pacifici R., Zuccaro P., Torta R., Guarneri L., Perucca E. (2002): Plasma concentrations of the enantiomers of fluoxetine and norfluoxetine: sources of variability and preliminary observations on relations with clinical response. Ther. Drug Monit. 24, 616–627.CrossRefPubMedGoogle Scholar
  8. 8.
    Heikkinen T., Ekblad U., Palo P., Laine K. (2003): Pharmacokinetics of fluoxetine and norfluoxetine in pregnancy and lactation. Clin. Pharmacol. Ther. 73, 330–337.CrossRefPubMedGoogle Scholar
  9. 9.
    Albrecht A., Adler R.H. (2001): Therapeutic inadequancy in spite of bioequivalency on replacing Flucitine® with Fluocim®. Swiss Med. Wkly. 131, 84.PubMedGoogle Scholar
  10. 10.
    The United States pharmacopoeia, 24th ed., Rockville, MD: United States Pharmacopoeial Convention, Inc., 2000, 1941–1943.Google Scholar
  11. 11.
    Guidance for industry, bioanalytical method validation (issued May 2001). Available at: Scholar
  12. 12.
    Schulz H.U., Steinijans V.W. (1991): Striving for standards in bioequivalence assessment: a review. Int. J. Clin. Pharmacol. Ther. Toxicol. 29, 293–298.PubMedGoogle Scholar
  13. 13.
    Zintzaras E. (2005): Statistical aspects of bioequivalence testing between two medicinal products. Eur. J. Drug Metab. Pharmacokinet., 30, 41–46.PubMedGoogle Scholar
  14. 14.
    Chow S.C., Liu J.P. Design and analysis of bioavailability and bioequivalence studies, 2nd ed., New York: Marcel Dekker, 2000, 57–78.Google Scholar
  15. 15.
    Guidance for Industry, Bioavailability and bioequivalence studies for orally administered drug products — general considerations (issued October 2000). Available at: Scholar
  16. 16.
    Hauck W.W., Parekh A., Lesko L.J., Chen M.L., Williams R.L. (2001): Limits of 80%–125% for AUC and 70%–143% for Cmax. What is the impact on bioequivalence studies? Int. J. Clin. Pharmacol. Ther. 39, 350–355.PubMedGoogle Scholar
  17. 17.
    Addison R.S., Franklin M.E., Hooper W.D. (1998): Sensitive, high-throughput gas chromatographic-mass spectrometric assay for fluoxetine and norfluoxetine in human plasma and its application to pharmacokinetic studies. J. Chromatogr. B. Biomed. Sci. Appl. 716, 153–160.CrossRefPubMedGoogle Scholar
  18. 18.
    Moraes M.O., Lerner F.E., Corso G., Bezerra F.A., Moraes M.E., De Nucci G. (1999): Fluoxetine bioequivalence study: quantification of fluoxetine and norfluoxetine by liquid chromatography coupled to mass spectrometry. J. Clin. Pharmacol. 39, 1053–1061.CrossRefPubMedGoogle Scholar
  19. 19.
    Sutherland F.C., Badenhorst D., de Jager A.D., Scanes T., Hundt H.K., Swart K.J., Hundt A.F. (2001): Sensitive liquid chromatographic-tandem mass spectrometric method for the determination of fluoxetine and its primary active metabolite norfluoxetine in human plasma. J. Chromatogr. A. 914, 45–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Li C., Ji Z., Nan F., Shao Q., Liu P., Dai J., Zhen J., Yuan H., Xu F., Cui J., Huang B., Zhang M., Yu C. (2002): Liquid chromatography/tandem mass spectrometry for the determination of fluoxetine and its main active metabolite norfluoxetine in human plasma with deuterated fluoxetine as internal standard. Rapid Commun. Mass Spectrom. 16, 1844–1850.CrossRefPubMedGoogle Scholar
  21. 21.
    Herchuelz A. (1996): Bioequivalence assessment and the conduct of bioequivalence trials: a European point of view. Eur. J. Drug Metab. Pharmacokinet. 21, 149–152.CrossRefPubMedGoogle Scholar
  22. 22.
    Patnaik, R., Lesko, L.J., Chan, K., Williams R.L. (1996): Bioequivalence assessment of generic drugs: an American point of view. Eur. J. Drug Metab. Pharmacokinet. 21, 159–164.CrossRefPubMedGoogle Scholar
  23. 23.
    Pan, R.N., Chen, T.H., Shu-Hiu Huang, C., Hsiong C.H. (2002): Pharmacokinetics and bioequivalent study of generic fluoxetine capsules preparation. J. Food Drug Anal. 10, 13–17.Google Scholar
  24. 24.
    Guidance for industry, statistical approaches to establishing bioequivalence (issued January 2001 ). Available at: index.htm.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • D. Jovanović
    • 1
  • V. Kilibarda
    • 1
  • S. Dordević
    • 1
  • M. Jovanović
    • 2
  • J. Jović-Stošić
    • 2
  • D. Srdić
    • 3
  • T. Knežević
    • 3
  1. 1.Institute of Toxicology and PharmacologyNational Poison Control CentreBelgradeSerbia and Montenegro
  2. 2.Clinic of Emergency and Clinical Toxicology and PharmacologyNational Poison Control CentreBelgradeSerbia and Montenegro
  3. 3.Hemofarm KoncemVršacSerbia and Montenegro

Personalised recommendations