In vitro formation of selegiline-N-oxide as a metabolite of selegiline in human, hamster, mouse, rat, guinea-pig, rabbit and dog

  • Ferenc Lévai
  • Erzsébet Fejér
  • Gábor Szeleczky
  • Anna Szabó
  • Tünde Erős-Takácsy
  • Félix Hajdu
  • Gyula Szebeni
  • István Szatmári
  • István Hermecz


It is well established in the litrature, that selegiline is metabolised to itsN-dealkylated metabolites,N-desmethylselegiline, methamphetamine and amphetamine. However, most studies on selegiline metabolism did not characterize the species differences in the formation of the metabolites. Therefore, in this study, we investigated the in vitro metabolism of selegiline in liver microsomes of different species. In addition, to the previously well-characterized metabolites, selegiline-N-oxide (selegiline-NO) was found to be formed as a metabolite of selegiline in rat liver microsomal preparation. The results of experiments with liver microsomes from other species indicated species differences in the rate and extent of formation of selegiline-NO. The dog and hamster liver microsomal preparations were the most active in terms of selegiline-NO production, whereas little selegiline was metabolized to itsN-oxide in human liver microsomes. When selegiline-NO was incubated with rat liver microsomes, no metabolism occurred. When a short incubation time was applied in selegiline expriments no increase in the amount of selegiline-NO was detected. Accordingly, it was clear that selegiline was not metabolized to theN-dealkylated orN,N-bis-dealkylated compounds via selegiline-NO. Studies with different isoenzyme inhibitors indicated that the formation of selegiline-NO might be catalyzed at least partly by cytochrome P450 (CYP) 2D6 and CYP3A4. With the exception of hamster microsomes in the microsomal preparations in vitro, the formation of theR,S-stereoisomer of selegiline-NO was preferred.


Selegiline selegiline-N-oxide in vitro metabolism liver microsomes CYP3A4 CYP2D6 rat dog hamster mouse guinea-pig rabbit human 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heinonen, E.H., Anttila, M.I., Lammintausta, R.A.S., (1993): Pharmacokinetics and clinical pharmacology of deprenyl. In I. Szelényi (Ed.), Inhibitors of monoamine oxidase B — Pharmacology and clinical use in neurodegenerative disorders, Birkhäuser Verlag Basel/Switzerland,, pp. 201–213Google Scholar
  2. 2.
    Ecsery, Z., Müller, M., Knoll, J., Somfai, É.,(1962): Hung. Pat. 151,090 Chem. Abstr.60,11939dGoogle Scholar
  3. 3.
    Ecsery. Z., Kósa, I., Knoll, J., Somfai, É., (1965): Neth. Appl. 6,605,956 Chem. Abstr. 67,2161 lyGoogle Scholar
  4. 4.
    Gyarmati, L., Plachy, J., Sátory, É, Rácz, I., Tamás, J., (1975): A contribution to the metabolism of Deprenyl. Acta Pharmaceutica Hungarica, 45, 139–144.PubMedGoogle Scholar
  5. 5.
    Magyar, K., Skolnik, J., Knoll, J., (1968): Radiopharmacological analytic studies with deprenyl-14C. In Leszkowszky, G.P. (Ed.), V. Conferencia Hungarica pro Therapia et Investigatione in Pharmacologia, Budapest Hungarian Academy of Sciences, Budapest, pp. 103–109.Google Scholar
  6. 6.
    Reynolds, G.P., Riederer, P., Sandler, M., Jellinger, K., Seemann, D., (1978): Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)-deprenyl administration. J. Neural Transmission. 43, 271–277.CrossRefGoogle Scholar
  7. 7.
    Reynolds, G.P., Elsworth, J.D., Blau, K., Sandler, M., Lees, A.J., Stern, G.M., (1978): Deprenyl is metabolized to methamphetamine and amphetamine in man. Br. J. Clin. Pharm. 6, 542–544.Google Scholar
  8. 8.
    Sandler, M., Glover, V., Ashford, A., Stern, G.M., (1978): Absence of “Cheese effect” during deprenyl therapy: some recent studies, J. Neural Transmission. 43, 209–215.CrossRefGoogle Scholar
  9. 9.
    Chrisp, P., Mammen, G.J., Sorkin, E.M., (1991): Deprenyl — A review of its pharmacology, symptomatic benefits and protective potencial in Parkinson’s disease. Drugs Aging, 1, 228–248.CrossRefPubMedGoogle Scholar
  10. 10.
    Gerlach, M., Youdim, M.B.H., Riederer, P., (1996): Pharmacology of deprenyl. Neurology, 47 Suppl. 3, S137-S145.PubMedGoogle Scholar
  11. 11.
    Heinonen, E.H., Lammintausta, R., (1991): A review of the pharmacology of deprenyl. Acta Neurologica Scandinavica [Suppl.], 136, 44–59.CrossRefGoogle Scholar
  12. 12.
    Heinonen, E.H., (1995): Deprenyl in the treatment of Parkinson’s disease — Pharmacokinetic and clinical studies. Academic Dissertation, University of Turku, Turku, Finland, Publ.: Serioffset, Turku.Google Scholar
  13. 13.
    Lavelle, Th., Heinonen, E.H., (1992): Pharmacokinetics of Eldepryl®. In Eldepryl® (Deprenyl hydrochloride) — A new therapeutic era in Parkinson’s disease-Product Monograph, Adis International Limited, Chester, pp. 16–17.Google Scholar
  14. 14.
    Magyar, K., (1993): Pharmacology of monoamine oxidase type B inhibitors. In Szelényi I. (Ed.), Inhibitors of monoamine oxidase B-Pharmacology and clinical use in neurodegenerative disorders Birkhäuser Verlag Basel/Switzerland, pp. 125–143Google Scholar
  15. 15.
    Mahmood, I., (1997): Clinical pharmacokinetics and pharmacodynamics of deprenyl — An update. Clin. Pharmacokin. 33, 91–102.CrossRefGoogle Scholar
  16. 16.
    Szatmári, I., Tóth, K., (1992): Pharmacokinetics and metabolism of deprenyl. Acta Pharmaceutica Hungarica. 62, 243–247.PubMedGoogle Scholar
  17. 17.
    Szatmári, I., (2001): Pharmacokinetic and metabolic characteristics of Deprenyl. In Magyar K. and Vizi E.S. (Eds.), Milestones in monoamine oxidase research: discovery of (−)-deprenyl. Mediana Publishing House, Budapest, pp. 61–80.Google Scholar
  18. 18.
    Yoshida, T., Yamada, Y., Yamamoto, T., Kuroiwa, Y., (1986): Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica, 16, 129–136.CrossRefPubMedGoogle Scholar
  19. 19.
    Grace, J.M., Kinter, M.T., Macdonald, T.L., (1994): Atypical Metabolism of deprenyl and its enantiomer, (S)-(+)-N,α-Dimethyl-N-propynylphenethylamine, by cytochrome P4502D6. Chem. Res. Toxicol. 7, 286–290.CrossRefPubMedGoogle Scholar
  20. 20.
    Wacher, V.J., Wong, S., Wong, HT., Benet, L.Z., (1996): Contribution of CYP3A to deprenyl metabolism in rat and human microsomes. In ISSX Proceedings 10, 7th North American ISSX Meeting, San Diego, California US A, pp. 351Google Scholar
  21. 21.
    Taavitsainen, P., Anttila, M., Nyman, L., Karnani, H., Pelkonen, O., (1998): Cytochrome P450 enzymes and metabolism of deprenyl: the in vitro study in human liver microsomes. Exp. Toxicol. Pathology, 50, 138.Google Scholar
  22. 22.
    Taavitsainen, P., Anttila, M., Nyman, L., Karnani, H., Salonen J.S., Pelkonen, O., (2000): Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol. Toxicol. 86, 215–221.CrossRefPubMedGoogle Scholar
  23. 23.
    Valoti, M., Fusi F., Frosini M, Pessina F, Tipton K.F., Sgaragli G.P., (2000): Cytochrom P450-dependent N-dealkylation of L-deprenyl in C57BL mouse liver microsomes: effects of in vivo and in vivo treatment with ethanol, phenobarbital, beta-naphtoflavone and L-deprenyl. Eur. J.Pharmacol. 391, 199–206.CrossRefPubMedGoogle Scholar
  24. 24.
    Scheinin, H., Anttila, M., Dahl, M-L., Karnani, H., Nyman, L., Taavitsainen, P., Pelkonen, O., Bertilsson, L., (1998): CYP2D6 polymorphism is not crucial for the disposition of deprenyl. Clin. Pharm. Ther. 64, 402–411CrossRefGoogle Scholar
  25. 25.
    Wu, R-F., Ichikawa, Y., (1995): Inhibition of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolic activity of porcine FAD-containin monooxygenase by selective monoamine oxidase-B inhibitors. FEBS Letters, 358, 145–148.CrossRefPubMedGoogle Scholar
  26. 26.
    Schachter, M., Mardsen, C.D., Parkes, J.D., Jenner, P., Testa, B., (1980): Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J. Neurology, Neurosurgery and Psychiatry. 43, 1016–1021.CrossRefGoogle Scholar
  27. 27.
    Meeker, J.E., Reynolds, Ph.C., (1990): Postmortem tissue methamphetamine concentrations following deprenyl administration. J. Anal. Toxicol. 14, 330–331.PubMedGoogle Scholar
  28. 28.
    Szökö, É., Magyar, K., (1996): Enantiomer identification of the major metabolites of (−)deprenyl in rat urine by capillary electrophoresis. Int. J. Pharm. Advances. 1, 320–328.Google Scholar
  29. 29.
    Shin, H-S., (1997): Metabolism of deprenyl in humans — Identification, excretion and stereochemistry of urine metabolites. Drug Metab. Dispos. 25, 657–662.PubMedGoogle Scholar
  30. 30.
    Lévai, F., Fejér E., Szabó A., Erőss-Takácsi T., Szebeni Gy., Szatmári I, Hermecz L, (2000): Study on the in vitro metabolism of selegiline on microsomes. Symposium on pharmacokinetics and metabolism. Mátraháza, Hungary, Proceedings, pp. 46.Google Scholar
  31. 31.
    Guengerich, F.P., (1989): In Hayes, A.V. (Ed.), Principles and Methods of Toxicology Raven Press, Ltd., NewYork, pp. 777.Google Scholar
  32. 32.
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J., (1951): Protein determination with the folin phenol reagent. J. Biol. Chem. 193. 265–275.PubMedGoogle Scholar
  33. 33.
    Newton, D.J., Wang, R.W., Lu, A.Y.H., (1995): Cytochrome P450 inhibitors: Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab. Dispos. 23, 154–158.PubMedGoogle Scholar
  34. 34.
    Magyar, K., Szüts, T., (1982): The fate of (−)-deprenyl in the body — Preclinical studies. In Szebeni, R. (Ed.), Proceedings of the international symposium on (−)-deprenyl, Jumex, Szombathely, Hungary Chinoin, Budapest, pp. 25–31.Google Scholar
  35. 35.
    Katagi, M., Tatsuno, M., Miki, A., Nishikawa, M., Nakajima, K., Tsuchihashi, H., (2001): Simultaneous determination of selegiline-N-oxide, a new indicator for selegiline administration, and other meabolites in urine by high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B. 759, 125–133.CrossRefGoogle Scholar
  36. 36.
    Katagi, M., Tatsuno, M., Tsutsumi, H., Miki, A., Nishioka, K., Nakajima, K., Nishikawa, M., Tsuchihashi, H., (2002): Urinary excretion of selegiline N-oxide, a new indicator for selegiline administration in man. Xenobiotica. 32, 823–831.CrossRefPubMedGoogle Scholar
  37. 37.
    Bach, M.V., Couts, T.T., Baker, G.B., (2000): Metabolism of N,N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in a human cell line. Xenobiotica. 30, 297–306.CrossRefPubMedGoogle Scholar
  38. 38.
    Weli A.M., Lindeke B., (1986) Peroxidative N-oxidation and N-dealkylation Tactions with pargyline. Xenobiotica. 16, 281–288.CrossRefPubMedGoogle Scholar
  39. 39.
    Boulton, A.A., Davis, B.A., Durden, D.A., Dyck, L.E., Juorio, A.V., Li, X-M., Paterson, I.A., Yu, P.H., (1997): Aliphatic propargylamines: New antiapoptotic drugs. Drug Dev. Res. 42, 150–156.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ferenc Lévai
    • 1
  • Erzsébet Fejér
    • 1
  • Gábor Szeleczky
    • 1
  • Anna Szabó
    • 1
  • Tünde Erős-Takácsy
    • 1
  • Félix Hajdu
    • 1
  • Gyula Szebeni
    • 1
  • István Szatmári
    • 1
  • István Hermecz
    • 1
  1. 1.R.&D, Preclinical DevelopmentChinoin Co. LtdBudapestHungary

Personalised recommendations