Skip to main content
Log in

In vitro formation of selegiline-N-oxide as a metabolite of selegiline in human, hamster, mouse, rat, guinea-pig, rabbit and dog

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

It is well established in the litrature, that selegiline is metabolised to itsN-dealkylated metabolites,N-desmethylselegiline, methamphetamine and amphetamine. However, most studies on selegiline metabolism did not characterize the species differences in the formation of the metabolites. Therefore, in this study, we investigated the in vitro metabolism of selegiline in liver microsomes of different species. In addition, to the previously well-characterized metabolites, selegiline-N-oxide (selegiline-NO) was found to be formed as a metabolite of selegiline in rat liver microsomal preparation. The results of experiments with liver microsomes from other species indicated species differences in the rate and extent of formation of selegiline-NO. The dog and hamster liver microsomal preparations were the most active in terms of selegiline-NO production, whereas little selegiline was metabolized to itsN-oxide in human liver microsomes. When selegiline-NO was incubated with rat liver microsomes, no metabolism occurred. When a short incubation time was applied in selegiline expriments no increase in the amount of selegiline-NO was detected. Accordingly, it was clear that selegiline was not metabolized to theN-dealkylated orN,N-bis-dealkylated compounds via selegiline-NO. Studies with different isoenzyme inhibitors indicated that the formation of selegiline-NO might be catalyzed at least partly by cytochrome P450 (CYP) 2D6 and CYP3A4. With the exception of hamster microsomes in the microsomal preparations in vitro, the formation of theR,S-stereoisomer of selegiline-NO was preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heinonen, E.H., Anttila, M.I., Lammintausta, R.A.S., (1993): Pharmacokinetics and clinical pharmacology of deprenyl. In I. Szelényi (Ed.), Inhibitors of monoamine oxidase B — Pharmacology and clinical use in neurodegenerative disorders, Birkhäuser Verlag Basel/Switzerland,, pp. 201–213

    Google Scholar 

  2. Ecsery, Z., Müller, M., Knoll, J., Somfai, É.,(1962): Hung. Pat. 151,090 Chem. Abstr.60,11939d

  3. Ecsery. Z., Kósa, I., Knoll, J., Somfai, É., (1965): Neth. Appl. 6,605,956 Chem. Abstr. 67,2161 ly

  4. Gyarmati, L., Plachy, J., Sátory, É, Rácz, I., Tamás, J., (1975): A contribution to the metabolism of Deprenyl. Acta Pharmaceutica Hungarica, 45, 139–144.

    CAS  PubMed  Google Scholar 

  5. Magyar, K., Skolnik, J., Knoll, J., (1968): Radiopharmacological analytic studies with deprenyl-14C. In Leszkowszky, G.P. (Ed.), V. Conferencia Hungarica pro Therapia et Investigatione in Pharmacologia, Budapest Hungarian Academy of Sciences, Budapest, pp. 103–109.

    Google Scholar 

  6. Reynolds, G.P., Riederer, P., Sandler, M., Jellinger, K., Seemann, D., (1978): Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)-deprenyl administration. J. Neural Transmission. 43, 271–277.

    Article  CAS  Google Scholar 

  7. Reynolds, G.P., Elsworth, J.D., Blau, K., Sandler, M., Lees, A.J., Stern, G.M., (1978): Deprenyl is metabolized to methamphetamine and amphetamine in man. Br. J. Clin. Pharm. 6, 542–544.

    CAS  Google Scholar 

  8. Sandler, M., Glover, V., Ashford, A., Stern, G.M., (1978): Absence of “Cheese effect” during deprenyl therapy: some recent studies, J. Neural Transmission. 43, 209–215.

    Article  CAS  Google Scholar 

  9. Chrisp, P., Mammen, G.J., Sorkin, E.M., (1991): Deprenyl — A review of its pharmacology, symptomatic benefits and protective potencial in Parkinson’s disease. Drugs Aging, 1, 228–248.

    Article  CAS  PubMed  Google Scholar 

  10. Gerlach, M., Youdim, M.B.H., Riederer, P., (1996): Pharmacology of deprenyl. Neurology, 47 Suppl. 3, S137-S145.

    CAS  PubMed  Google Scholar 

  11. Heinonen, E.H., Lammintausta, R., (1991): A review of the pharmacology of deprenyl. Acta Neurologica Scandinavica [Suppl.], 136, 44–59.

    Article  CAS  Google Scholar 

  12. Heinonen, E.H., (1995): Deprenyl in the treatment of Parkinson’s disease — Pharmacokinetic and clinical studies. Academic Dissertation, University of Turku, Turku, Finland, Publ.: Serioffset, Turku.

    Google Scholar 

  13. Lavelle, Th., Heinonen, E.H., (1992): Pharmacokinetics of Eldepryl®. In Eldepryl® (Deprenyl hydrochloride) — A new therapeutic era in Parkinson’s disease-Product Monograph, Adis International Limited, Chester, pp. 16–17.

    Google Scholar 

  14. Magyar, K., (1993): Pharmacology of monoamine oxidase type B inhibitors. In Szelényi I. (Ed.), Inhibitors of monoamine oxidase B-Pharmacology and clinical use in neurodegenerative disorders Birkhäuser Verlag Basel/Switzerland, pp. 125–143

    Google Scholar 

  15. Mahmood, I., (1997): Clinical pharmacokinetics and pharmacodynamics of deprenyl — An update. Clin. Pharmacokin. 33, 91–102.

    Article  CAS  Google Scholar 

  16. Szatmári, I., Tóth, K., (1992): Pharmacokinetics and metabolism of deprenyl. Acta Pharmaceutica Hungarica. 62, 243–247.

    PubMed  Google Scholar 

  17. Szatmári, I., (2001): Pharmacokinetic and metabolic characteristics of Deprenyl. In Magyar K. and Vizi E.S. (Eds.), Milestones in monoamine oxidase research: discovery of (−)-deprenyl. Mediana Publishing House, Budapest, pp. 61–80.

    Google Scholar 

  18. Yoshida, T., Yamada, Y., Yamamoto, T., Kuroiwa, Y., (1986): Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica, 16, 129–136.

    Article  CAS  PubMed  Google Scholar 

  19. Grace, J.M., Kinter, M.T., Macdonald, T.L., (1994): Atypical Metabolism of deprenyl and its enantiomer, (S)-(+)-N,α-Dimethyl-N-propynylphenethylamine, by cytochrome P4502D6. Chem. Res. Toxicol. 7, 286–290.

    Article  CAS  PubMed  Google Scholar 

  20. Wacher, V.J., Wong, S., Wong, HT., Benet, L.Z., (1996): Contribution of CYP3A to deprenyl metabolism in rat and human microsomes. In ISSX Proceedings 10, 7th North American ISSX Meeting, San Diego, California US A, pp. 351

  21. Taavitsainen, P., Anttila, M., Nyman, L., Karnani, H., Pelkonen, O., (1998): Cytochrome P450 enzymes and metabolism of deprenyl: the in vitro study in human liver microsomes. Exp. Toxicol. Pathology, 50, 138.

    Google Scholar 

  22. Taavitsainen, P., Anttila, M., Nyman, L., Karnani, H., Salonen J.S., Pelkonen, O., (2000): Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol. Toxicol. 86, 215–221.

    Article  CAS  PubMed  Google Scholar 

  23. Valoti, M., Fusi F., Frosini M, Pessina F, Tipton K.F., Sgaragli G.P., (2000): Cytochrom P450-dependent N-dealkylation of L-deprenyl in C57BL mouse liver microsomes: effects of in vivo and in vivo treatment with ethanol, phenobarbital, beta-naphtoflavone and L-deprenyl. Eur. J.Pharmacol. 391, 199–206.

    Article  CAS  PubMed  Google Scholar 

  24. Scheinin, H., Anttila, M., Dahl, M-L., Karnani, H., Nyman, L., Taavitsainen, P., Pelkonen, O., Bertilsson, L., (1998): CYP2D6 polymorphism is not crucial for the disposition of deprenyl. Clin. Pharm. Ther. 64, 402–411

    Article  CAS  Google Scholar 

  25. Wu, R-F., Ichikawa, Y., (1995): Inhibition of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolic activity of porcine FAD-containin monooxygenase by selective monoamine oxidase-B inhibitors. FEBS Letters, 358, 145–148.

    Article  PubMed  Google Scholar 

  26. Schachter, M., Mardsen, C.D., Parkes, J.D., Jenner, P., Testa, B., (1980): Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J. Neurology, Neurosurgery and Psychiatry. 43, 1016–1021.

    Article  CAS  Google Scholar 

  27. Meeker, J.E., Reynolds, Ph.C., (1990): Postmortem tissue methamphetamine concentrations following deprenyl administration. J. Anal. Toxicol. 14, 330–331.

    CAS  PubMed  Google Scholar 

  28. Szökö, É., Magyar, K., (1996): Enantiomer identification of the major metabolites of (−)deprenyl in rat urine by capillary electrophoresis. Int. J. Pharm. Advances. 1, 320–328.

    Google Scholar 

  29. Shin, H-S., (1997): Metabolism of deprenyl in humans — Identification, excretion and stereochemistry of urine metabolites. Drug Metab. Dispos. 25, 657–662.

    CAS  PubMed  Google Scholar 

  30. Lévai, F., Fejér E., Szabó A., Erőss-Takácsi T., Szebeni Gy., Szatmári I, Hermecz L, (2000): Study on the in vitro metabolism of selegiline on microsomes. Symposium on pharmacokinetics and metabolism. Mátraháza, Hungary, Proceedings, pp. 46.

  31. Guengerich, F.P., (1989): In Hayes, A.V. (Ed.), Principles and Methods of Toxicology Raven Press, Ltd., NewYork, pp. 777.

    Google Scholar 

  32. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J., (1951): Protein determination with the folin phenol reagent. J. Biol. Chem. 193. 265–275.

    CAS  PubMed  Google Scholar 

  33. Newton, D.J., Wang, R.W., Lu, A.Y.H., (1995): Cytochrome P450 inhibitors: Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab. Dispos. 23, 154–158.

    CAS  PubMed  Google Scholar 

  34. Magyar, K., Szüts, T., (1982): The fate of (−)-deprenyl in the body — Preclinical studies. In Szebeni, R. (Ed.), Proceedings of the international symposium on (−)-deprenyl, Jumex, Szombathely, Hungary Chinoin, Budapest, pp. 25–31.

  35. Katagi, M., Tatsuno, M., Miki, A., Nishikawa, M., Nakajima, K., Tsuchihashi, H., (2001): Simultaneous determination of selegiline-N-oxide, a new indicator for selegiline administration, and other meabolites in urine by high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B. 759, 125–133.

    Article  CAS  Google Scholar 

  36. Katagi, M., Tatsuno, M., Tsutsumi, H., Miki, A., Nishioka, K., Nakajima, K., Nishikawa, M., Tsuchihashi, H., (2002): Urinary excretion of selegiline N-oxide, a new indicator for selegiline administration in man. Xenobiotica. 32, 823–831.

    Article  CAS  PubMed  Google Scholar 

  37. Bach, M.V., Couts, T.T., Baker, G.B., (2000): Metabolism of N,N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in a human cell line. Xenobiotica. 30, 297–306.

    Article  CAS  PubMed  Google Scholar 

  38. Weli A.M., Lindeke B., (1986) Peroxidative N-oxidation and N-dealkylation Tactions with pargyline. Xenobiotica. 16, 281–288.

    Article  CAS  PubMed  Google Scholar 

  39. Boulton, A.A., Davis, B.A., Durden, D.A., Dyck, L.E., Juorio, A.V., Li, X-M., Paterson, I.A., Yu, P.H., (1997): Aliphatic propargylamines: New antiapoptotic drugs. Drug Dev. Res. 42, 150–156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

a member of Sanofi-Synthelabo Group, Budapest, Hungary

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lévai, F., Fejér, E., Szeleczky, G. et al. In vitro formation of selegiline-N-oxide as a metabolite of selegiline in human, hamster, mouse, rat, guinea-pig, rabbit and dog. European Journal of Drug Metabolism and Pharmacokinetics 29, 169–178 (2004). https://doi.org/10.1007/BF03190594

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190594

Keywords

Navigation