Advertisement

Phenobarbital N-glucosylation by human liver microsomes

  • Sheela G. Paibir
  • William H. Soine
  • Diana F. Thomas
  • Robert A. Fisher
Article

Summary

Glucosylation of xenobiotics in mammals has been observed for a limited number of drugs. Generally, these glucoside conjugates are detected as urinary excretion products with limited information on their formation. An in vitro assay is described for measuring the formation of the phenobarbital N-glucoside diasteriomers ((5R)-PBG, (5S)-PBG) using human liver microsomes. Human livers (n=18) were screened for their ability to N-glucosylate PB. Cell viability, period of liver storage, prior drug exposure, serum bilirubin levels, age, sex and ethnicity did not appear to influence the specific activities associated with the formation of the PB N-glucosides. The average rate of formation for both PB N-glucoside was 1.42±1.04 (range 0.11–4.64) picomole/min/mg-protein with an (5S)-PBG/(5R)-PBG ratio of 6.75±1.34. The apparent kinetic constants, Km and Vmax, for PB N-glucosylation for eight of the livers ranged from 0.61–20.8 mM and 2.41–6.29 picomole/min/mg-protein, respectively. The apparent Vmax/Km ratio for PB exhibited a greater than 20 fold variation in the ability of the microsomes to form the PB N-glucosides. It would appear that the formation of these barbiturate N-glucoside conjugates in vitro are consistent with the amount of barbiturate N-glucosides formed and excreted in the urine in prior drug disposition studies.

Keywords

Phenobarbital metabolism N-Glucosylation liver microsomes humans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matern H. and Matern S (1987): Formation of Bile Acid Glucosides and Dolichyl Phosphoglucose by Microsomal Glycosyltransferase in Liver, Kidney and Intestine in Man. Biochim. Biophys. Acta. 921, 1–6.PubMedGoogle Scholar
  2. 2.
    Arima N. and Kato Y (1990): Dose-Dependent Shift in Acyl Glucuronidation and Glucosidation of Pranoprofen, a 2-Arylpropionic Acid Derivative, in Mice in-vivo. J. Pharmacobio-Dyn., 13, 719–723.PubMedGoogle Scholar
  3. 3.
    Tang B. K. (1990): Drug Glucosidation. Pharmacol. Ther., 46, 53–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Soine P.J., Soine, W.H., Wireko, F.C., and Abraham, D.J. (1990): Stereochemical Characterization of the Diastereomers of the Amobarbital N-Glucosides Excreted in Human Urine. Pharm. Res., 7, 794–800.CrossRefPubMedGoogle Scholar
  5. 5.
    Kalow W., Tang B.K., Kadar D., and Inaba T. (1978): Distinctive patterns of amobarbital metabolites in man. Clin. Pharmac. Ther., 24, 576–582.Google Scholar
  6. 6.
    Kalow W., Tang B.K., Kadar D., Endrenyi L., and Chan F.Y. (1979): A method of studying drug metabolism in populations: Racial differences in amobarbital metabolism. Clin. Pharmac. Ther., 26, 766–776.Google Scholar
  7. 7.
    Kalow W., Kadar D., and Inaba T., and Tang B.K. (1977): A case of deficiency of N-hydroxylation of amobarbital. Clin. Pharmac. Ther., 21, 530–535.Google Scholar
  8. 8.
    Tang B.K. and Carro-Ciampi G. (1980): A method for the study of N-glucosidation in vitro — Amobarbital-N-Glucoside formation in incubations with human liver. Biochem. Pharmacol. 29, 2085–2088.CrossRefPubMedGoogle Scholar
  9. 9.
    Soine W.H., Soine P.J., Mongrain S.E., and England, T.M. (1989): Stereochemical Characterization of the N-8-D-Glucose Conjugates of Phenobarbital Excreted in Human Urine. Pharm. Res., 7, 402–406.CrossRefGoogle Scholar
  10. 10.
    Soine W.H., Soine P.J., England T.M., Welty D.F., and Wood J.H. (1990): HPLC Determination of the Diastereomers of 1-(β-D-Glucopyranosyl)phenobarbital in Human Urine. J. Pharm. Biomed. Anal., 8, 365–372.CrossRefPubMedGoogle Scholar
  11. 11.
    Soine W.H., Safi H., and Westkaemper R.B. (1992): A Radiochemical HPLC Method for Monitoring the N-Glucosylation of Phenobarbital by Mouse Liver Microsomes. J. Pharm. Res., 9, 613–616.CrossRefGoogle Scholar
  12. 12.
    Soine W.H., Soine P.J., England, T.M., Overton B.O., and Merat S. (1989): Synthesis of N-β-D-Glucopyranosyl Conjugates of Barbital, Phenobarbital, Metharbital and Mephobarbital. Carbohydr. Res., 193, 105–113.CrossRefPubMedGoogle Scholar
  13. 13.
    Homaidan F.R., Zhao L., Donovan V., Shinowara N.L., and Burakoff R. (1995): Separation of Pure Populations of Epithelial Cells from Rabbit Distal Colon. Anal. Biochem., 224, 134–139.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen X.Y., Zhao L.M., and Zhong D.F. (2003): A novel metabolic pathway of morphine: formation of morphine glucosides in cancer patients. Br. J. Clin. Pharmacol., 55, 570–578.CrossRefPubMedGoogle Scholar
  15. 15.
    Gessner T., Jacknowitz A., Vollmer C.A. (1973): Studies of mammalian glucoside conjugation. Biochem J., 132, 249–258.PubMedGoogle Scholar
  16. 16.
    Nakano K., Sugawara Y., Ohashi M., and Harigaya S. (1986): Glucoside Formation as a Novel Metabolic Pathway of Pantothenic acid in the Dog. Biochem. Pharmacol., 35, 3745–3752.CrossRefPubMedGoogle Scholar
  17. 17.
    Tjornelund J., Hansen S.H., Cornett C. (1989): New metabolites of the drug 5-aminosalicylic acid. I: N-beta-D-glucopyranosyl-5-aminosalicylic acid., Xenobiotica, 19, 891–899.CrossRefPubMedGoogle Scholar
  18. 18.
    Vest F.B., Soine W.H., Westkaemper R.B., and Soine P.J. (1989): Stability of Phenobarbital N-Glucosides: Identification of Hydrolysis Products and Kinetics of Decomposition. Pharm. Res., 6, 458–465.CrossRefPubMedGoogle Scholar
  19. 19.
    Radominska A., Little J., Pyrek, J.S., Drake R.R., Igari Y., Fournel-Gigleux S., Magdalou J., Burchell B., Elbein A.D., Siest G., and Lester R. (1993): A Novel UDP-Glc-Specific Glucosyltransferase Catalyzing The Biosynthesis of 6-O-Glucosides of Bile Acids in Human Liver Microsomes. J. Biol. Chem., 268, 15127–15135.PubMedGoogle Scholar
  20. 20.
    Nakano K., Ohashi M., Harigaya S. (1986): The β-Glucosidation and β-Glucuronidation of Pantothenic Acid Compared with p-Nitrophenol in Dog Liver Microsomes. Chem. Pharm. Bull., 34, 3949–3952.PubMedGoogle Scholar
  21. 21.
    Drake R.R., Igari Y., Lester R., Elbein A.D., and Radominske A. (1992): Application of 5-azido-UDP-glucose and 5-azido-UDP-glucuronic acid Photoaffinity Probes for the Determination of the Active Site Orientation of Microsomal UDP-glucosyltransferases and UDP-glucuronosyltransferases. J. Biol. Chem., 267, 11360–11365.PubMedGoogle Scholar
  22. 22.
    Wong KP (1971): Formation of bilirubin glucoside. Biochem J., 125, 929–934.PubMedGoogle Scholar
  23. 23.
    Fevery J., Leroy P., and Heirwegh K.P.M. (1972): Enzymatic Transfer of Glucose and Xylose from Uridine Diphosphate Glucose and Uridine Diphosphate Xylose to Bilirubin by Untreated and Digitonin-Activated Preparations from Rat Liver. Biochem. J., 129, 619–633.PubMedGoogle Scholar
  24. 24.
    Segel I.H. (1976): Biochemical Calculations. New York, John Wiley & Sons, p. 222.Google Scholar
  25. 25.
    Howell S.R., Hazelton G.A., and Klaassen C.A. (1986): Depletion of Hepatic UDP-Glucuronic Acid by Drugs that are Glucuronidated. J. Pharmac. Exp. Ther., 236, 610–614.Google Scholar
  26. 26.
    Bernus I., Dickinson R.G., Hooper W.D., and Eadie M.J. (1994): Urinary Excretion of Phenobarbitone and its Metabolites in Chronically Treated Patients. Eur. J. Clin. Pharmacol., 46, 473–475.CrossRefPubMedGoogle Scholar
  27. 27.
    Clarke’s Isolation and Identification of Drugs In pharmaceuticals, Body Fluids and Post-mortem Materials, 2nd Edn., Moffat, A.C. Editor, The Pharmaceutical Press, London; 1986, pp. 883–884.Google Scholar
  28. 28.
    Paibir S.G. and Soine W.H. (1997): HPLC Analysis of Phenobarbital and Phenobarbital Metabolites in Human Urine. J. Chromatogr. B., 691, 111–117.CrossRefGoogle Scholar
  29. 29.
    Neighbors S.M. and Soine W.H. (1995): Identification of Phenobarbital N-Glucuronides as Urinary Metabolites of Phenobarbital in Mice. Drug Metab. Disp., 23, 548–552.Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Sheela G. Paibir
    • 1
  • William H. Soine
    • 1
  • Diana F. Thomas
    • 1
  • Robert A. Fisher
    • 1
  1. 1.Department of Medicinal Chemistry and Department of Surgery, Medical College of Virginia/VirginiaCommonwealth UniversityRichmondUSA

Personalised recommendations