Modulatory influence of tin-protoporphyrin on gossypol-induced alterations of heme oxygenase activity in male wistar rats

  • Ritu Aneja
  • Sujata K. Dass
  • Ramesh Chandra


Gossypol — a male contraceptive is toxic and causes anorexia, reduction in body weight, hypokalemia etc. It prevents liberation of oxygen from oxyhemoglobin and has hemolytic effect on erythrocytes and leads to microcytic hypochromic anemia. SnPP has been shown to either competitively suppress or to significantly ameliorate a variety of naturally occuring or experimentally induced forms of jaundice in animals and man by inhibiting heme degradation. In this paper novel tissue-dependent response to differential dosing regimen of gossypol and gossypol in association with Sn-protoporphyrin (SnPP) is described. Gossypol was found to be a stimulator of heme oxygenase activity in the liver and kidney to varying degrees. This tissue response contrasted with that of the spleen, where gossypol decreased the activity of the enzyme. The increase in enzymatic activity was accompanied by a decline in the total microsomal protein content on gossypol administration. The gossypol mediated an increase of heme oxygenase activity, elevated bilirubin levels leading to hyperbilirubinemia. The stimulatory effect of gossypol was counteracted to a considerable extent when SnPP was simultaneously administered. Hence, we envision the importance of combined rather than single exposures in defining the realms of toxicology of these and other related drugs. We further envisage the existence of important gossypol-heme interactions in the regulation of heme metabolism.


Gossypol Heme Oxygenase Heme Catabolism Sn-protoporphyrin (SnPP) Hyperbilirubinemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams R., Geissman T.A. and Edwards, J.D. (1960): Gossypol, a pigment of cottonseed. Chem. Rev., 60, 555–574.CrossRefPubMedGoogle Scholar
  2. 2.
    Segal S.J., (ed) (1985): Gossypol, A Potential Contraceptive for Men, Plenum Press, New York.Google Scholar
  3. 3.
    Qian S.J. and Wang Z.G. (1984): Gossypol: A potential antifertility agent for males. Annu. Rev. Pharmacol Toxicol, 24, 329–60.CrossRefPubMedGoogle Scholar
  4. 4.
    Yukelson L.Y. (ed) (1981): Natural Polyphenol and their derivatives — Antiviral Agents and Interferon Inducers, Izdatelstvo Fan, Tashkent.Google Scholar
  5. 5.
    Montamat E.E. Burgos C., Gerez de Burgos M.M. et al (1982): Inhibitory action of gossypol on enzymes and growth of trypanosoma cruzi. Science, 218, 288–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Benz C., Hollander C., Keniry M. et al (1987): Lactic dehydrogenase isozymes,31P magnetic resonance spectroscopy and in vitro antimitochondrial tumor toxicity with gossypol and rhodamine 123. J. Clin. Invest., 79, 517.CrossRefPubMedGoogle Scholar
  7. 7.
    Shidifat F., Canatan H., Kulp S.K. (1997): Gossypol arrests human benign prostratic hyperplastic cell growth at G0/G1 phase of the cell cycle. Anticancer Res., 17(2A), 1003–9.Google Scholar
  8. 8.
    Rao P.N., Wang Y., et al (1985): Antitumor effects of gossypol on murine tumors. Cancer Chemother. Pharmacol., 15, 20–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Leblanc M.L., Russ J., Kudelka A.P. and Smith J.A. (2002): An in vitro study of inhibitory activity of gossypol, a cottonseed extract, in human carcinoma cell lines. Pharmacol. Res., 46(6), 551–555.CrossRefGoogle Scholar
  10. 10.
    Menaul P. (1923): The physiological effect of gossypol. J. Agril. Res., 26(5), 233–7.Google Scholar
  11. 11.
    Hahn D.W., Rusticus C., Probst A., et al (1981): Antifertility and endocrine activities of gossypol in rodents. Contraception, 24(1), 97–105.CrossRefPubMedGoogle Scholar
  12. 12.
    Grankvist K. (1989): Gossypol induced free radical toxicity to isolated islet cells. Int. J. Biochem., 21(8), 853–856.CrossRefPubMedGoogle Scholar
  13. 13.
    Gafvels M., Wang J., Bergh A., et al (1984): Toxic effects of the antifertility agent, gossypol in male rats. Toxicology, 32(4), 325–333.CrossRefPubMedGoogle Scholar
  14. 14.
    Danke R.J. and Tillman A.D. (1965): Effect of free gossypol and supplemental dietary iron on blood constituents of rats. J. Nutr., 87, 493–498.PubMedGoogle Scholar
  15. 15.
    Akingbemi B.T., Aire T. (1994): Hematological and serum biochemical changes in the rat due to protein malnutrition and gossypol-ethanol interactions. J. Comp. Pathol., 111(4), 413–416.CrossRefPubMedGoogle Scholar
  16. 16.
    Chadha S., Sanyal S.N., Kanwar U. (1989): Reversibility of the effects of gossypol acetic acid, an antispermatogenic/antifertility agent on the intestinal structure and functions of male albino rats. Res Exp. Med. (Berl), 189(3), 205–209.CrossRefGoogle Scholar
  17. 17.
    Tso W.W., Lee C.S. (1981): Effect of gossypol on boar spermatozoa. Arch. Androl., 7(1), 85–88.CrossRefPubMedGoogle Scholar
  18. 18.
    Abou-Donia M.B., Dieckert J.W. (1975): Metabolic fate of gossypol: The metabolism of 14C-gossypol in swine. Toxicol. Appl. Pharmacol., 31, 32–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Royer R.E. and Vander Jagt D.L. (1983): Gossypol binds to a high-affinity binding site on human serum albumin. FEBS Lett., 157(1) 28–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Royer R.E., Kibirgie M. et al (1988): Binding of gossypol derivatives to human serum albuminn. J. Pharm. Sci. Mar 77(3), 237–240.CrossRefGoogle Scholar
  21. 21.
    Sardana M.K. and Kappas A. (1987): Dual control mechanism for heme oxygenase: Tin (IV) protoporphyrin potently inhibits enzyme activity while markedly increasing the content of enzyme protein in the liver. Proc. Natl. Acad. Sci. USA, 84, 2464–2468.CrossRefPubMedGoogle Scholar
  22. 22.
    Finlay T., Dharmagrongartama E. and Perlmann G. (1973): The mechanism of gossypol inactivation of pepsinogen. J. Biol. Chem., 248, 4827–4833.PubMedGoogle Scholar
  23. 23.
    Hogeboom G.H. (1955): Methods in Enzymology, (Colowick S.P. and Kaplan N.O. eds), Academic Press, New York, 1, 16.Google Scholar
  24. 24.
    Umbeit W.W., Burries R.H. and Stauffer S.F. (1957): Burgess Publishing Co., Minneapolis III rd ed 10.Google Scholar
  25. 25.
    Maines M.D. and Kappas A. (1955): Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P450. J. Biol. Chem., 250(11), 4171–4177.Google Scholar
  26. 26.
    Kutty R.K. and Maines M.D. (1981): Purification and characterization of biliverdin reductase from rat liver. J. Biol. Chem., 256, 3956–3962.PubMedGoogle Scholar
  27. 27.
    Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951): Protein measurement with Folin-phenol reagent. J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  28. 28.
    Maines M.D. and Panahian N. (2001): The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv. Exp. Med. Biol., 502, 249–272.PubMedGoogle Scholar
  29. 29.
    Maines M.D. (1988): Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical applications. FASEB J., 2(10), 2557–68.PubMedGoogle Scholar
  30. 30.
    Maines M.D. (1984): New developments in the regulation of heme metabolism and their implications Crit. Rev. Toxicol., 12(3), 241–314.CrossRefGoogle Scholar
  31. 31.
    Kappas A. and Drummond G.S. (1986): Control of heme metabolism with synthetic metalloporphyrins. J. Clin. Invest., 77, 335–339.CrossRefPubMedGoogle Scholar
  32. 32.
    Elbirt K.K. and Bonkovsky H.L. (1999): Heme oxygenase: Recent advances in understanding its regulation and role. Proc. Assoc. Am. Physicians, 111(5), 438–447.PubMedGoogle Scholar
  33. 33.
    Afonso S., Varone G., Batlle A. (1999): Protoporphyrin IX and oxidative stress. Free Rad. Res. 31(3), 161–170.CrossRefGoogle Scholar
  34. 34.
    Ryter S.W., Tyrell R.M. (2000): The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both proand anti oxidant properties. Free radic. Biol. Med. 28(2), 289–309.CrossRefPubMedGoogle Scholar
  35. 35.
    Beri R. and Chandra R. (1993): Chemistry and Biology of heme: Effect of metals, organometals and metalloporphyrins on heme synthesis and catabolism, with special reference to clinical implications and interactions with cytochrome P450. Drug Metabol. Rev., 25 (1&2), 49–152.CrossRefGoogle Scholar
  36. 36.
    Strom H.T., Cornett C. and Jarozewski J.W. (1989): Interaction of gossypol with amino acids and peptides as a model of enzyme inhibition. Int. J. Peptide Protein Res., 34, 306–310.Google Scholar
  37. 37.
    Wan P.J., Calhoun M.C., Hron R.J. et al. (1995): Proceessing effect on gossypol availability in cottonseed products. Symposium on available gossypol in cottonseed products, Inform., 6, 486.Google Scholar
  38. 38.
    Lyman C.M., Baliga B.P. and Slay M.W. (1959): Reactions of proteins with gossypol., Arch. Biochem. Biphys., 84, 486–497.CrossRefGoogle Scholar
  39. 39.
    Damaty S.M. and Hudson B.J.F. (1975): Preparation of low gossypol cottonseed flour. J. Sci. Food Agric., 26, 109–115.CrossRefPubMedGoogle Scholar
  40. 40.
    Maines M.D. and Kappas A. (1977): Ennzymatic oxidation of cobalt-protoporphyrin IX-observations on the mechanism of heme oxygenase, Biochemistry, 16 (3), 419–422.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Ritu Aneja
    • 1
  • Sujata K. Dass
    • 3
  • Ramesh Chandra
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia
  2. 2.Dr B.R. Ambedkar Center for Biomedical ResearchUniversity of DelhiDelhiIndia
  3. 3.Department of Medicine, V.P. Chest InstituteUniversity of DelhiDelhiIndia

Personalised recommendations