Does stress influence ampicillin concentration in serum and tissues?

  • Tesseromatis C. 
  • Trichilis A. 
  • Tsivos E. 
  • Messari J. 
  • Triantaphyllidis H. 
  • Varonos D. D. 


Exercise produces changes of drug levels in plasma and increases the concentration of free fatty acids (FFAs), which may interfere with drug-protein binding. FFAs seem to play an antagonistic role to drugs since they have a strong binding capacity to serum albumin. The aim of this study was to evaluate the influence of the consecutive exercise-induced stress in ampicillin levels. Two groups of Wistar rats were used. Group A consisted of six subgroups that were subjected to cold swimming (4°C) for 5, 10, 15, 20, 25, 30 days respectively. Group B was the control group. The animals were injected im. with ampicillin (1 g/Kg/8h in 5 doses). Results showed that exercise enhanced stress parameters (FFAs, adrenal weight, Ht%) and led to an ampicillin increase in all experimental groups comparatively to controls.


Cold swimming stress ampicillin concentration serum and tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hurwitz G, Webb J, Walle T, Bai S, Daniell H, Courley L. (1983): Exercise induced increments in plasma levels of proprandol and noradrenaline. Br J Pharmacol; 16: 599–608Google Scholar
  2. 2.
    Ylitalo P, Hinkka H, Neuvonen PJ. (1977): Effect of exercise on the serum level and urinary excretion of tetracycline, doxycycline and sulphamethizole. Eur J Clin Pharmacol 12: 367–373CrossRefPubMedGoogle Scholar
  3. 3.
    Powis G, Snow DH. (1978): The effects of exercise and adrenaline infusion upon the blood levels of propranolon and antipyrine in the horse. J Pharmacol Exp Ther 205(3): 725–731PubMedGoogle Scholar
  4. 4.
    Papadopoulos NM, Bloor CM, Standefer JC. (1969): Effects of exercise and training on plasma lipids and lipoproteins in the rats. J Appl Physiol 26: 760–763PubMedGoogle Scholar
  5. 5.
    Giagnoni G, Santagostino A, Senini R, Fumagalli P, Cori E. (1983): Cold 013 stress in the rat induces changes in plasma levels of endorphin and ACTH. Pharm Research Communications 15(1) 0139 0208Google Scholar
  6. 6.
    Santagastino A, Giagnoni G, Panlraia A, Denti M, Paresi D, Fumagalli P, Gorris I. (1982): Changes in endorphin content induced by cold stress in the rat pituitary gland. IRCS Sci 10: 173–179Google Scholar
  7. 7.
    Tsopanakis C, Kostarellis D, Dontas I, Karayannacos P, Skalkeas G. (1988): Effects of cold stress on serum lipids lipoproteins and the activity of LCAT in rabbits. Bioch Med Metabol Biol 39: 148–157CrossRefGoogle Scholar
  8. 8.
    Connell A.M., Cooper J., Redfearn J.W. (1958): The contrasting effects of emotional tension and physical exercise on the excretion of 17-ketogenic steroids and 17-ketosteroids. Acta Endocrinol 27: 179–194PubMedGoogle Scholar
  9. 9.
    Rosch JP. (1983): Stress, cholesterol and coronary heart disease. The Lancet Oct: 851–852CrossRefGoogle Scholar
  10. 10.
    Rivier C, Vale W. (1983): Modulation of stress induced ACTH release of corticotropin-releasing factor catecholamines and vasopresin. Nature 305: 325–327CrossRefPubMedGoogle Scholar
  11. 11.
    Starjec JJ, Barger DF, Hesse R. (1983): Effect of stress and exercise on plasma corticosterone, plasma cholesterol and aortic cholesterol levels in rats. Psychosomatic Medicine 45(3): 219–226Google Scholar
  12. 12.
    Crane A. (1969): Anterior pituitary junction during surgical stress. J Clin Endocrinol 29: 63–67CrossRefGoogle Scholar
  13. 13.
    Schach D. (1969): The influence of physical stress and exercise on growth or more and insuline secretion. J Clin Med 69: 256–259Google Scholar
  14. 14.
    Suldow G, Birkett D, Wade D. (1976): Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12: 1052–1062Google Scholar
  15. 15.
    Achbrook J.D, Spector A.A., Santos E.C, Fletcher J.E. (1975): Long chain fatty acid binding to human plasma albumin. J Biol Chem 250: 2333–2338Google Scholar
  16. 16.
    Bennet V.J, Brodie L.J, Benner L.E, Kirby NW. (1966): Simplified accurte method to antibiotic assay of clinical specimens. App. Microbiol 14: 170–177Google Scholar
  17. 17.
    Kurz H. (1961): Ein Geraet zur Herstellun duenner Schnitte aus frischem tiereschem Gewebe. Z Ges: Exp Med 134, 304–308CrossRefGoogle Scholar
  18. 18.
    Munck A, Guyre PM, Holbrook NI. (1984): Physiological functions of glucocorticoids in stress and their relationship to pharmacological actions. Endocrine Reviews 5: 25–44CrossRefPubMedGoogle Scholar
  19. 19.
    Selye H, (1946): J Clin Endocrin Metabol 6: 117CrossRefGoogle Scholar
  20. 20.
    Groenewald JV, Terblanche SE, Oelofsen W. (1980): Effect of prolonged exercise on certain anatomical and biochemical parameters in male and female rats. African Sports Research. 1: 43–52Google Scholar
  21. 21.
    Jurgens JL, Kirillov OI. (1972): Mitotic activity of the cells of the adrenal cortex of rats subjected to prolonged hypokinesia. Bulletin of Exper Biol Med 74: 98Google Scholar
  22. 22.
    Jurgens JL, Kirillov OI. (1970): Mitotic activity of the cells of the adrenal cortex of rats subjected to prolonged exercise. Bulletin of Exper Biol Med 69: 100CrossRefGoogle Scholar
  23. 23.
    Sfikakis A., Galanopoulou P, Konstandi M., Tsakayannis D. (1996): Stress through handling for vaginal screening, serotonin and Acth response to ether. Pharm Biochem Behav 53(4): 965–970CrossRefGoogle Scholar
  24. 24.
    Goldstein DS, Dionne R, Sweet J, Gracely R, Brewer HB Jr, Gregg R, Kaiser HR. (1982): Circulatory plasma catecholamine, cortisol lipid and psychological responses to a real life stress (wisdom tooth extractios). Effects of diazepam sedation and inclusion of epinephrine with the local anesthetic. Psychosomatic Medicine 44(3): 259–271PubMedGoogle Scholar
  25. 25.
    Tsopanakis C, Tesseromatis C. (1991): Cold swimming stress: Effects on serum lipids, lipoproteins and LCAT activity in male and female rats. Pharmacol Bioch Behav 38: 813–816CrossRefGoogle Scholar
  26. 26.
    Mason JW. (1968): A review of phycoendocrine research on the pituitary adrenal cortisol system. Psychosomatic Medicine, 30, 576PubMedGoogle Scholar
  27. 27.
    Konig E, Lemp A. (1966): Plasmavolumenaenderungen durch alltaglich Belastungen Herzgesunden und Herzinsuffizienten. Klin Wochenschr 44: 862–870CrossRefPubMedGoogle Scholar
  28. 28.
    Dettli L. Spring P. (1966): Diurnal variations in the elimination rate of sulfonamide in man. Helv Med Acta 33: 291–306Google Scholar
  29. 29.
    Schmidt H, Roholt K. (1959): Penicillin serum concentrations in relation to exercise. Acta Path Microbiol Scand 68: 396–399Google Scholar
  30. 30.
    Hermansen L, Osnes JB. (1972): Blood and muscle pH after maximal exercise in man. J Appl Physiol 32: 304–308PubMedGoogle Scholar
  31. 31.
    Bennet W., Walker R., Henry J., Kincaid F. (1983): Chronic interstial nephropathy is mice induced by psycosocial stress. Nephron 34: 110–113CrossRefGoogle Scholar
  32. 32.
    Neusholme E.A., Leech A.R. 1983: Biochemistry on the Medical Science. Edition. Willy and sons, pp 571,Google Scholar
  33. 33.
    Sellers, E.M. 1978: The clinical importance of interactions based on displacement of protein bound drugs. Pro. Int. Cong. Pharm 2, pp 896Google Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Tesseromatis C. 
    • 1
  • Trichilis A. 
    • 1
  • Tsivos E. 
    • 1
  • Messari J. 
    • 1
  • Triantaphyllidis H. 
    • 1
  • Varonos D. D. 
    • 1
  1. 1.Department of Pharmacology, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations