Characterization of lidocaine metabolism by rat nasal microsomes: implications for nasal drug delivery

  • V. S. Deshpande
  • M. B. Genter
  • C. Jung
  • P. B. Desai


Lidocaine has been recently approved for use as an intranasal spray in the treatment of migraine. In this study, we investigated the metabolism of lidocaine to its primary metabolite monoethylglycine xylidide (MEGX), by rat nasal olfactory and respiratory microsomes. The metabolic parameters were compared with metabolism employing rat and human hepatic microsomes. The olfactory and respiratory microsomes both exhibited considerable activity for conversion of lidocaine to MEGX in comparison with the activity in the hepatic tissues. The rat olfactory microsomes had a markedly higher affinity than the rat hepatic or respiratory microsomes. However, the turnover rate was only about one-half that of rat liver. Employing Western immunoblotting we investigated the presence of cytochrome P450s (CYPs) 1A2, 3A2, 2B1 and 2C11 in rat nasal tissues; these isozymes are known to participate in the metabolism of lidocaine in rat liver. These isozymes were found to be present in significant amounts in both the nasal olfactory and respiratory tissue; this is the first known report of the presence of CYP2C11 in nasal mucosae. Our studies underscore the importance of CYP-mediated drug metabolism in nasal tissues. The effect of this ‘nasal first-pass’ should be weighed carefully while considering the fate and the bioavailability of drugs delivered via the intranasal route.


Lidocaine metabolism nasal cytochrome P450 isozymes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kudrow L., Kudrow D.B., Sandweiss J.H. (1995): Rapid and sustained relief of migraine attacks with intranasal lidocaine: preliminary findings. Headache, 35: 79–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Hermansson J., Glaumann H., Karlen B., Von Bahr C. (1980): Metabolism of lidocaine in human liver in vitro. Acta Pharmacol. Toxicol., 47, 49–52.Google Scholar
  3. 3.
    Imaoka S., Enomoto K., Oda Y. et al. (1990): Lidocaine metabolism by human cytochrome P-450s purified from hepatic microsomes: comparison of those with rat hepatic cytochrome P-450s. J. Pharmacol. Exp. Ther., 255, 1385–1391.PubMedGoogle Scholar
  4. 4.
    Parker RJ., Collins J.M., Strong J.M. (1996): Identification of 2,6-xylidide as a major lidocaine metabolite in human liver slices. Drug Metab. Dispos., 24, 1167–1173.PubMedGoogle Scholar
  5. 5.
    Imaoka S., Yamada T., Hiroi T. et. al. (1996): Multiple forms of human P450 expressed inSaccharomyces cerevisiae: systemic characterization and comparison with those of the rat. Biochem. Pharmacol., 51: 1041–1050.CrossRefPubMedGoogle Scholar
  6. 6.
    Sallie R.W., Tredger J.M., Williams R. (1992): Extrahepatic production of the lignocaine metabolite monoethylglycinexylidide (MEGX). Biopharm. Drug Dispos., 13: 555–558.CrossRefPubMedGoogle Scholar
  7. 7.
    Tanaka K., Oda Y., Asada A., Fujimori M., Funae Y. (1994): Metabolism of lidocaine by rat pulmonary cytochrome P450. Biochem. Pharmacol., 47, 1061–1066.CrossRefPubMedGoogle Scholar
  8. 8.
    Sarkar M.A. (1992): Drug metabolism in the nasal mucosa. Pharm. Res., 9, 1–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Blumer J., Strong J.M., Atkinson AJ. (1973): The convulsant potency of lidocaine and its N-dealkylated metabolites. J. Pharmacol. Exp. Ther., 186: 31–36.PubMedGoogle Scholar
  10. 10.
    Haseman J.K., Crawford D.D., Huff J.E., Boorgman G.A., McConnell E.E. (1984): Results from 86 2-year carcinogenicity studies conducted by the National Toxicology Program. J. Toxicol. Environ. Health, 14: 621–640.CrossRefPubMedGoogle Scholar
  11. 11.
    Haseman, J.K., Hailey, J.R. (1997): An update of the National Toxicology Program database on nasal carcinogens. Mutat. Res., 380: 3–11.PubMedGoogle Scholar
  12. 12.
    Maizels M., Scott B., Cohen W, Chen W. (1996): Intranasal lidocaine for treatment of migraine: a randomized, doubleblind, controlled trial. JAMA, 276, 319–321.CrossRefPubMedGoogle Scholar
  13. 13.
    Genter M.B., Deamer N.J., Cao Y., Levi P.E. (1994): Effects of P450 inhibition and induction on the olfactory toxicity of β, β′ iminodipropionitrile (IDPN) in the rat. J. Biochem. Toxicol., 9: 31–39.CrossRefPubMedGoogle Scholar
  14. 14.
    Kawai R., Fujita S., Suzuki T. (1985): Simultaneous quantitation of lidocaine and its four metabolites by high-performance liquid chromatography: application to studies onin vitro andin vivo metabolism of lidocaine in rats. J. Pharm. Sci., 74: 1219–1224.CrossRefPubMedGoogle Scholar
  15. 15.
    Akaike A. (1978): Posterior probabilities for choosing a regression model. Ann. Inst. Math. Stat., 30: A9-A14.CrossRefGoogle Scholar
  16. 16.
    Schwarz G. (1978): Estimating the dimension of a model. Ann. Stat., 6: 461–464.CrossRefGoogle Scholar
  17. 17.
    Moore K.H., Hussey, E.K., Shaw S., Fuseau E., Duquesnoy C., Pakes G.E. (1997): Safety, tolerability, and pharmacokinetics of sumatriptan in healthy subjects following ascending single doses and multiple intranasal doses. Cephalgia, 17: 541–550.CrossRefGoogle Scholar
  18. 18.
    Gallagher R.M. (1996): Acute treatment of migraine with dihydroergotamine nasal spray. Arch. Neurol., 53: 1285–1291.PubMedGoogle Scholar
  19. 19.
    Melanson S.W., Morse J.W., Pronchik D.J., Heller, M.B. (1997): Transnasal butorphanol in the emergency department management of migraine headache. Am. J. Emerg. Med., 15: 57–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Levy R.L. (1995): Intranasal capsaicin for acute abortive treatment of migraine without aura. Headache, 35: 277.CrossRefPubMedGoogle Scholar
  21. 21.
    Sakane T., Akizuki M., Taki Y, Yamashita S., Sezaki H., Nadai T. (1995). Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J. Pharm. Pharmacol., 47: 379–381.PubMedGoogle Scholar
  22. 22.
    Dahl A.R., Hadley W.M. (1991): Nasal cavity enzymes involved in xenobiotic metabolism: effects on the toxicity of inhalants. Crit. Rev. Toxicol., 21: 345–372.CrossRefPubMedGoogle Scholar
  23. 23.
    Genter M.B., Liang H.C., Gu J. et al. (1998): Role of CYP2A5 and 2G1 in acetaminophen metabolism and toxicity in the olfactory mucosa of theCypla2(-/-) mouse. Biochem. Pharmacol., 55: 1819–1826.CrossRefPubMedGoogle Scholar
  24. 24.
    Bogdanffy M.S., Mathison B.H., Kuykendall J.R., Harman A.E. (1997): Critical factors in assessing risk from exposure to nasal carcinogens. Mutat. Res., 380, 125–141.PubMedGoogle Scholar
  25. 25.
    Harkema J.R. (1990): Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants. Enivron. Health Perspect., 85: 235–238.Google Scholar
  26. 26.
    Jafek B.W., Johnson E.W., Eller P.M., Murrow B. (1997): Olfactory mucosal biopsy and related histology. In: Seiden A.M. (ed.) Taste and Smell Disorders, New York: Theime Medical, 107–127.Google Scholar
  27. 27.
    Gervasi P.G., Longo V., Naldi F., Panattoni G., Ursino F. (1991): Xenobiotic metabolizing enymes in human respiratory nasal mucosa. Biochem. Pharmacol., 41, 177–184.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • V. S. Deshpande
    • 1
  • M. B. Genter
    • 2
  • C. Jung
    • 1
  • P. B. Desai
    • 1
  1. 1.Division of Pharmaceutical Sciences, College of PharmacyUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Environmental HealthUniversity of CincinnatiCincinnatiUSA

Personalised recommendations