Non-invasive methods to study drug disposition: Positron Emission Tomography Detection and quantification of brain receptors in man

  • B. Sadzot
  • G. Franck


Positron emission tomography (PET) has been used mostly for the study of brain blood flow and metabolism in normal controls and in a variety of neurological and psychiatric conditions. With the appropriate radiotracers, PET also allows non-invasive imaging and quantification of a growing list of neuroreceptors, the target of most psychotropic drugs. For example,11C-carfentanil and11C-diprenorphine, two potent opiate ligands, have been used to label opiate receptors in vivo in man. Methods have been developed to quantify receptor studies with PET in terms of receptor density and affinity. PET is a unique tool that now allows measurement of receptor occupancy in vivo and could be used by the pharmacologist to optimize drug treatment.


Positron Emission Tomography neuroreceptors opiates receptor occupancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phelps M.E., Mazziotta J.C. (1985): Positron emission tomography: human brain function and biochemistry. Science, 228, 799–809.CrossRefPubMedGoogle Scholar
  2. 2.
    Mazziotta J.C., Phelps M.E., Plummer D., Kuhl D.E. (1981): Quantitation in positron emission tomography: 5. physical-anatomical effects. J. Comp. Assist Tomogr., 5, 134–743.Google Scholar
  3. 3.
    Frost J.J. (1986): Imaging neuronal biochemistry by emission computed tomography: focus on neuroreceptors. Trends Pharmacol. Sei., 7, 490–496.CrossRefGoogle Scholar
  4. 4.
    Sadzot B., Frost J.J., Wagner H.N., Jr. (1989): In vivo labeling of central benzodiazepine receptors with the partial inverse agonist [3H]-Ro 15-4513. Brain Res., 491, 128–135.CrossRefPubMedGoogle Scholar
  5. 5.
    Hartvig P., Bergström K., Lindberg B., et al. (1984): Kinetics of11C-labeled opiates in the brain of rhesus monkeys. J. Pharmacol. Exp. Therap., 230, 250–255.Google Scholar
  6. 6.
    Mather L.E. (1983): Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin. Pharmacokin, 8, 422–446.CrossRefGoogle Scholar
  7. 7.
    Dannais R.F., Ravert H.T., Frost J.J., Wilson A.A., Burns H.D., Wagner H.N., Jr. (1985): Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int J. Appl. Radiat Isot, 36, 303–306.CrossRefGoogle Scholar
  8. 8.
    Frost J.J., Wagner H.N., Jr., Dannais R.F., et al. (1985): Imaging opiate receptors in the human brain by positron emission tomography. J. Comput Ass. Tomogr, 9, 231–236.CrossRefGoogle Scholar
  9. 9.
    Lever J.R., Dannals R.F., Wilson A.A., Ravert H.T., Wagner H.N., Jr. (1987): Synthesis of carbon-11 labeled diprenorphine: a radioligand for positron emission tomographic studies of opiate receptors. Tet. Lett, 28, 4015–4018.CrossRefGoogle Scholar
  10. 10.
    Chang K-J., Hazum E., Cuatrecasas P. (1981): Novel opiate binding sites selective for benzomorphan drugs. Proc. Natl. Acad. Sei. USA, 78, 4141–4145.CrossRefGoogle Scholar
  11. 11.
    Kuhar M.J., Pert C.B., Snyder S.H. (1973): Regional distribution of opiate receptor binding in monkey and human brain. Nature, 245, 447–451.CrossRefPubMedGoogle Scholar
  12. 12.
    Pfeiffer A., Pasi A., Mehraein P., Herz A. (1982): Opiate receptor binding sites in human brain. Brain Res, 248, 87–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Frost J J, Mayberg H.S, Sadzot B, et al. (1989): Comparison of11C-diprenorphine and11C-carfentanil binding to opiate receptors in man by positron emission tomography. J. Cereb. Blood Flow Metab, In press.Google Scholar
  14. 14.
    Huang S.C., Barrio J.R., Phelps M.E. (1986): Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J. Cereb. Blood Flow Metab, 6, 515–521.PubMedGoogle Scholar
  15. 15.
    Mintun M.A., Raichle M.E., Kilboum M.R., Wooten G.F., Welch M.J. (1984): A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol, 15, 217–227.CrossRefPubMedGoogle Scholar
  16. 16.
    Huang S-C., Bahn M.M., Barrio J.R., et al. (1989): A double injection technique for the in vivo measurement of dopamine D2-receptor density in monkeys with 3-(2′-[18F]fluoroethyl)spiperone and dynamic positron emission tomography. J. Cereb. Blood Flow Metab, 9, 850–858.PubMedGoogle Scholar
  17. 17.
    Farde L., Eriksson L., Blomquist G., Halldin C. (1989): Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET — A comparison to the equilibrium analysis. J. Cereb. Blood Flow Metab, 9, 696–708.PubMedGoogle Scholar
  18. 18.
    Frost J.J., Sadzot B., Mayberg H.S., et al. (1989): Estimation of receptor number and affinity for11C-diprenorphine binding to opiate receptors in man by PET. J. Cereb. Blood Flow Metab, 9 (Suppll), S192.Google Scholar
  19. 19.
    Frost J.J., Mayberg H.S., Fisher R.S., et al. (1988) Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann. Neurol., 23, 231–237.CrossRefPubMedGoogle Scholar
  20. 20.
    Savic I, Persson A, Roland P, Pauli S., Sedvall G, Widen L. (1988): In vivo demonstration of reduced benzodiazepine binding inhuman epileptic foci. Lancet, Oct 15, 863–866.Google Scholar
  21. 21.
    Wong D.F., Wagner H.N., Tune L.E., et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 1558–1563.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee M.C., Wagner H.N., Jr., Tanada S., Frost J.J., Bice A.N., Dannais R.F. (1988): Duration of occupancy of opiate receptors by naltrexone. J. Nucl. Med., 29, 1207–1211.PubMedGoogle Scholar
  23. 23.
    Smith M., Wolf A.P., Brodie J.D., et al. (1988): Serial [18F]N-methylspiperidol PET studies to measure changes in antipsychotic drug D2 receptor occupancy in schizophrenic patients. Biol Psychiatr., 23, 653–663.CrossRefGoogle Scholar
  24. 24.
    Wong D.F., Wagner H.N., Jr, Dannais R.F., et al. (1984): Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science, 226, 1393–1396.CrossRefPubMedGoogle Scholar
  25. 25.
    Bice A.N., Wagner H.N., Jr., Frost J.J., et al. (1986): Simplified detection system for neuroreceptor studies in the human brain J. Nucl. Med., 27, 184–191.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • B. Sadzot
    • 1
    • 2
  • G. Franck
    • 1
    • 2
  1. 1.The Cyclotron Research CenterUniversity of LiégeLiége-Sart TilmanBelgium
  2. 2.Department of NeurologyUniversity of LiégeBelgium

Personalised recommendations