Metabolic fate of 2,2-dimethylbutyryl moiety of simvastatin in rats: Identification of metabolites by gas chromatography/ mass spectrometry

  • N. Uchiyama
  • Y. Kagami
  • Y. Saito
  • S. Abe
  • M. Ohtawa
  • S. Hata


Metabolic pathways of simvastatin (MK-733), a lactone prodrug of an inhibitor of HMG-CoA reductase, were elucidated in male rats, using the [14C]-labelled compound. Evidence has been obtained for hydrolysis of simvastatin and its metabolites at their 2,2-dimethylbutyryl moieties. Metabolites identified in plasma were 2,2-dimethylbutyric acid (DMB), 2,2-dimemyl-3-hydroxybutyric acid (DMHB) and an open chain hydroxy acid of simvastatin: metabolites identified in urine were DMHB, a glucuronide and the glycine conjugate of DMB. They were characterized by gas chromatography/electron impact and chemical ionization mass spectrometry as phenacyl or pertrimethylsilylated derivatives. The structures of the metabolites and the aglycone of the glucuronide were confirmed as phenacyl esters by comparison of their chromatographic data and mass spectra with those of the phenacyl derivatives of authentic compounds.


[14C]-Simvastatin rat metabolite 2,2-climethylbutyric acid gas chromatography/mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Illingworth D.R., Bacon S. (1987): Hypolipidemic effects of HMG-CoA reductase inhibitors in patients with hypercholesterolemia. Am. J. Cardiol., 60, 33G-42G.CrossRefPubMedGoogle Scholar
  2. 2.
    Endo A. (1988): Chemistry, biochemistry and pharmacology of HMG-CoA reductase inhibitors. Klin. Wochenschr., 66, 421–427.CrossRefPubMedGoogle Scholar
  3. 3.
    Alberts A.W., Chen J., Kuron G., et al. (1980): Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent Ptoc. Natl. Acad. Sci. USA, 77, 3957–3961.CrossRefGoogle Scholar
  4. 4.
    Tsujita Y., Kuroda M., Shimada Y., et al. (1986): CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim. Biophys. Acta, 877, 50–60.PubMedGoogle Scholar
  5. 5.
    Hoffman W.F., Alberts A.W., Anderson P.S., Chen J.S., Smith R.L., Willard A.K. (1986): 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 4. Side chain ester derivatives of mevinolin. J. Med. Chem., 29, 849–852.CrossRefPubMedGoogle Scholar
  6. 6.
    Alberts A.W., Chen J., Huff J., Hunt V., Kuron G. (1986): Comparative studies on the hydroxymethyl-glutaryl coenzyme A reductase inhibitors mevinolin, MK-733 and CS-514. Proc. IXth Int Symp. Drugs Affect Lipid Metab., (Florence), 8.Google Scholar
  7. 7.
    Ishida F., Sato A., Iizuka Y., Sawasaki Y., Aizawa A., Kamei T. (1988): Effects of MK-733, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, on absorption and excretion of [3H]-cholcsterol in rabbits. Biochim. Biophys. Acta, 963, 35–41.PubMedGoogle Scholar
  8. 8.
    Kobayashi M., Ishida F., Takahashi T., et al. (1989): Preventive effect of MK-733 (simvastatin), an inhibitor of HMG-CoA reductase, on hypercholesterolemia and atherosclerosis induced by cholesterol feeding in rabbits. Jap. J. Pharmacol., 49, 125–133.CrossRefPubMedGoogle Scholar
  9. 9.
    Mol M.J.T.M., Erkelens D.W., Leuven J.A.G., Schouten J.A., Stalenhoef A.F.H. (1986): Effects of synvinolin (MK-733) on plasma lipids in familial hypercholesterolaemia. Lancet, ii, 936–939.CrossRefGoogle Scholar
  10. 10.
    Simons L.A., Nestel P.J., Calvert G.D., Jennings G.L. (1987): Effects of MK-733 on plasma lipid and lipoprotein levels in subjects with hypercholesterolaemia. Med. J. Aust., 147, 65–68.PubMedGoogle Scholar
  11. 11.
    Walker J.F., Tobert J.A. (1987): The clinical efficacy and safety of lovastatin and MK-733 — an overview. Eur. Heart J., 8, 93–96.PubMedGoogle Scholar
  12. 12.
    Mol M.J.T.M., Erkelens D.W., Leuven J.A.G., Schouten J.A., Stalenhoef A.F.H. (1988): Simvastatin (MK-733): a potent cholesterol synthesis inhibitor in heterozygous familial hypercholesterolaemia. Atherosclerosis, 69, 131–137.CrossRefPubMedGoogle Scholar
  13. 13.
    Mol M.J.T.M., Stuyt P.M.J., Stalenhoef A.F.H. (1989): Effectiviteit veiligheid van simvastatine, een nieuw cholesterolverlagend geneesmiddel. Ned. Tijdschr. Geneeskd., 133, 362–366.PubMedGoogle Scholar
  14. 14.
    Leclercq V, Harvengt C. (1989): Simvastatin (MK-733) in heterozygous familial hypercholesterolemia: a two-year trial. Int. J. Clin. Pharmacol. Ther. Toxicol., 27, 76–81.PubMedGoogle Scholar
  15. 15.
    Pietro D.A., Alexander S., Mantell G., Staggers J.E., Cook T.J. (1989): Effects of simvastatin and probucol in hypercholesterolemia (simvastatin multicenter study group II). Am. J. Cardiol., 63, 682–686.CrossRefPubMedGoogle Scholar
  16. 16.
    Grundy S.M. (1988): HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N. Engl. J. Med., 319, 24–33.CrossRefPubMedGoogle Scholar
  17. 17.
    Germershausen J.I., Hunt V.M., Bostedor R.G., Bailey P.J., Karkas J.D., Alberts A.W. (1989): Tissue selectivity of the cholesterol-lowering agents lovastatin, simvastatin and pravastatin in rats in vivo. Biochem. Biophys. Res. Commun., 158, 667–675.CrossRefPubMedGoogle Scholar
  18. 18.
    Greenspan M.D., Yudkovitz J.B., Alberts A.W., Argenbright L.S., Arison B.H., Smith J.L. (1988): Metabolism of lovastatin by rat and human liver microsomes in vitro. Drug Metab. Dispos., 16, 678–682.PubMedGoogle Scholar
  19. 19.
    Duggan D.E. (1988): The physiological disposition of lovastatin. Proc. 8th Int. Symp. Atherosclerosis (Rome), 1067.Google Scholar
  20. 20.
    Vyas K.P. (1988): Metabolism of lovastatin and simvastatin by rat and mouse liver microsomes. Proc. 8th Int. Symp. Atherosclerosis (Rome), 1068.Google Scholar
  21. 21.
    Duggan D.E., Chen I-W., Bayne W.F., et al. (1989): The physiological disposition of lovastatin. Drug Metab. Dispos., 17, 166–173.PubMedGoogle Scholar
  22. 22.
    Ohtawa M., Uchiyama N., Saito Y., et al. (1989): Phase I study of MK-733, an inhibitor of HMG-CoA reductase II: pharmacokinetics of MK-733 in healthy subjects after single and multiple oral administration. J. Clin. Ther. Med., 5, 1123–1140.Google Scholar
  23. 23.
    Clark J.H., Miller J.M. (1977): Hydrogen bonding in organic synthesis V: Potassium fluoride in carboxylic acids as an alternative to crown ether with acid salts in the preparation of phenacyl esters. Tetrahedron Lett., 7, 599–602.CrossRefGoogle Scholar
  24. 24.
    Hendrickson J.B., Kandall C. (1970): The phenacyl protecting group for acids and phenols. Tetrahedron Lett., 5, 343–344.CrossRefGoogle Scholar
  25. 25.
    Kuhara T., Matsumoto I., Ohno M., Ohura T. (1986): Identification and quantification of octanoyl glucuronide in the urine of children who ingested medium-chain triglycerides. Biomed. Environ. Mass Spectrom., 13, 595–598.CrossRefPubMedGoogle Scholar
  26. 26.
    Breeman R.B., Stogniew M., Fenselau C. (1988): Characterization of acyl-linked glucuronides by electron impact and fast atom bombardment mass spectrometry. Biomed. Environ. Mass Spectrom., 17, 97–103.CrossRefGoogle Scholar
  27. 27.
    Kuhara T., Hirokata Y., Yamada S., Matsumoto I. (1978): Metabolism of sodium dipropylacetate in human. Eur. J. Drug. Metab., 9, 171–177.CrossRefGoogle Scholar
  28. 28.
    Vickers S., Duncan C.A.H., White S.D., et al. (1985): Carnitine and glucuronic acid conjugates of pivalic acid. Xenobiotica, 15, 453–458.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. Uchiyama
    • 1
  • Y. Kagami
    • 1
  • Y. Saito
    • 1
  • S. Abe
    • 1
  • M. Ohtawa
    • 1
  • S. Hata
    • 1
  1. 1.Central Research LaboratoriesBanyu Pharmaceutical Co. LtdTokyoJapan

Personalised recommendations