Advertisement

Gamma variate fits to pharmacokinetic data

  • M. Pfeffer
Original Papers

Summary

The gamma variate, C=Ata exp(−bt), was tested, as a fitting function, with various real and error-free simulated intravascular and extravascular pharmacokinetic data sets and the results compared with polyexponential fits. For extravascular data, the gamma variate is only suitable to globally fit data which might otherwise be described biexponentially. For intravascular data, the gamma variate could only fit a limited range of the possible concentration-time profiles. Gamma variate fitting algorithms must minimize relative deviations; fits using unweighted sums of squared deviations gave excellent results at higher concentration values but consistently underestimated terminal descending portions of the data.

Key words

Gamma variate fitting exponential fitting pharmacokinetics data evaluation concentration-time profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Norris W.P., Kisielski W. (1948): Comparative metabolism of radium, strontium and calcium. Cold Spring Harbor Symp. Quant Biol., 13, 164–172.Google Scholar
  2. 2.
    Way K., Wigner E.P. (1948): Rate of decay of fission products. Physical Rev., 73, 1318–1330.CrossRefGoogle Scholar
  3. 3.
    Weiss M. (1983): Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol., 25, 695–702.CrossRefPubMedGoogle Scholar
  4. 4.
    Sainsbury E.J., Ashley J.J. (1986): Curve-fitting in pharmacokinetics — a comparison between gamma and biexponential fits. Eur. J. Clin. Pharmacol., 30, 243–244.CrossRefPubMedGoogle Scholar
  5. 5.
    Norris W.P., Tyler S.A., Brues A.M. (1958): Retention of radioactive bone-seekers. Science, 128, 456–462.CrossRefPubMedGoogle Scholar
  6. 6.
    Hartley H.O. (1961): The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics, 3, 269–280.CrossRefGoogle Scholar
  7. 7.
    Brown R.D., Manno J.E. (1978): ESTRIP, a BASIC computer program for obtaining initial polyexponential parameter estimates. J. Pharm. Sci., 67, 1687–1691.CrossRefPubMedGoogle Scholar
  8. 8.
    Worsley B.H., Lax L.C. (1962): Selection of a numerical technique for analyzing experimental data of the decay type with special reference to the use of tracers in biological systems. Biochim. Biophys. Acta., 59, 1–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Ottaway J.H. (1973): Normalization in the fitting of data by iterative methods. Biochem. J., 134, 729–736.PubMedGoogle Scholar
  10. 10.
    Berman M., Weiss M.F. (1967): Users Manual for SAAM, U.S. Public Health Service 1703, U.S. Government Printing Office, Washington.Google Scholar
  11. 11.
    Gibaldi M., Perrier D. (1982): Pharmacokinetics, 2nd ed., New York: Marcel Detter, pp. 433–444.Google Scholar
  12. 12.
    Wagner J.G. (1975): Fundamentals of clinical pharmacokinetics. Drug Intelligence Publications, Hamilton, Illinois, pp. 60–62.Google Scholar
  13. 13.
    Kahlmeter G., Jonsson S., Kamme C. (1978): Multiple-compartment pharmacokinetics of tobramycin. J. Antimicrob. Chemother., 4(suppl A), 5–11.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Pfeffer
    • 1
  1. 1.Department of Metabolism and PharmacokineticsBristol-Myers Pharmaceutical Research and Development DivisionSyracuseUSA

Personalised recommendations