Skip to main content
Log in

Gamma variate fits to pharmacokinetic data

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The gamma variate, C=Ata exp(−bt), was tested, as a fitting function, with various real and error-free simulated intravascular and extravascular pharmacokinetic data sets and the results compared with polyexponential fits. For extravascular data, the gamma variate is only suitable to globally fit data which might otherwise be described biexponentially. For intravascular data, the gamma variate could only fit a limited range of the possible concentration-time profiles. Gamma variate fitting algorithms must minimize relative deviations; fits using unweighted sums of squared deviations gave excellent results at higher concentration values but consistently underestimated terminal descending portions of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norris W.P., Kisielski W. (1948): Comparative metabolism of radium, strontium and calcium. Cold Spring Harbor Symp. Quant Biol., 13, 164–172.

    CAS  Google Scholar 

  2. Way K., Wigner E.P. (1948): Rate of decay of fission products. Physical Rev., 73, 1318–1330.

    Article  CAS  Google Scholar 

  3. Weiss M. (1983): Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol., 25, 695–702.

    Article  CAS  PubMed  Google Scholar 

  4. Sainsbury E.J., Ashley J.J. (1986): Curve-fitting in pharmacokinetics — a comparison between gamma and biexponential fits. Eur. J. Clin. Pharmacol., 30, 243–244.

    Article  CAS  PubMed  Google Scholar 

  5. Norris W.P., Tyler S.A., Brues A.M. (1958): Retention of radioactive bone-seekers. Science, 128, 456–462.

    Article  CAS  PubMed  Google Scholar 

  6. Hartley H.O. (1961): The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics, 3, 269–280.

    Article  Google Scholar 

  7. Brown R.D., Manno J.E. (1978): ESTRIP, a BASIC computer program for obtaining initial polyexponential parameter estimates. J. Pharm. Sci., 67, 1687–1691.

    Article  CAS  PubMed  Google Scholar 

  8. Worsley B.H., Lax L.C. (1962): Selection of a numerical technique for analyzing experimental data of the decay type with special reference to the use of tracers in biological systems. Biochim. Biophys. Acta., 59, 1–24.

    Article  CAS  PubMed  Google Scholar 

  9. Ottaway J.H. (1973): Normalization in the fitting of data by iterative methods. Biochem. J., 134, 729–736.

    CAS  PubMed  Google Scholar 

  10. Berman M., Weiss M.F. (1967): Users Manual for SAAM, U.S. Public Health Service 1703, U.S. Government Printing Office, Washington.

    Google Scholar 

  11. Gibaldi M., Perrier D. (1982): Pharmacokinetics, 2nd ed., New York: Marcel Detter, pp. 433–444.

    Google Scholar 

  12. Wagner J.G. (1975): Fundamentals of clinical pharmacokinetics. Drug Intelligence Publications, Hamilton, Illinois, pp. 60–62.

    Google Scholar 

  13. Kahlmeter G., Jonsson S., Kamme C. (1978): Multiple-compartment pharmacokinetics of tobramycin. J. Antimicrob. Chemother., 4(suppl A), 5–11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeffer, M. Gamma variate fits to pharmacokinetic data. European Journal of Drug Metabolism and Pharmacokinetics 13, 155–159 (1988). https://doi.org/10.1007/BF03189934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03189934

Key words

Navigation