Skip to main content
Log in

Inhibition of diazepam metabolism in microsomal-and perfused liver preparations of the rat by desmethyldiazepam, N-methyloxazepam and oxazepam

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Hydroxylated metabolites of diazepam can be conjugated and are therefore generally thought not to affect the metabolism of diazepam. Liver microsomes, obtained from phenobarbital-pretreated rats, showed an inhibition of diazepam (10−5 M) metabolism by desmethyldiazepam as well as by N-methyloxazepam or oxazepam (5 × 10−5 M). In a single-pass perfusion of the rat liver an inhibition of diazepam disposition by exogenously administered desmethyldiazepam and by hydroxylated diazepam metabolites was also demonstrated. No oxazepam glucuronides were found after oxazepam infusion. However, infusion with N-methyloxazepam resulted in large amounts of oxazepam-glucuronides.

The results indicate that administration of N-demethylated as well as hydroxylated metabolites may result in inhibition of the metabolism of their precursor. If hydroxylated metabolites are formed in situ they become more easily conjugated in comparison with administered hydroxylated metabolites and are therefore less effective as inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellantuono C., Reggi V., Tognoni G. and Garattini S. (1980): Benzodiazepines: Clinical pharmacology and therapeutic use. Drugs,19, 195–219.

    Article  CAS  PubMed  Google Scholar 

  2. Mandelli M., Tognoni G. and Garattini S. (1978): Clinical pharmacokinetics of diazepam. Clin. Pharmacokin.,3, 72–91.

    Article  CAS  Google Scholar 

  3. Klotz U. (1978): Klinische Pharmakokinetik von Diazepam und seinen biologisch aktiven Metaboliten. Klin. Wochenschr.,56, 895–904.

    Article  CAS  PubMed  Google Scholar 

  4. Marcucci R., Fanelli R., Mussini E. and Garattini S. (1969): The metabolism of diazepam by liver microsomal enzymes of rats and mice. Eur. J. Pharmacol.,7, 307–313.

    Article  CAS  PubMed  Google Scholar 

  5. Igari Y., Sugiyama Y., Sawada Y., Iga T. and Hanano M. (1982): Tissue distribution of14C-diazepam and its metabolites in rats. Drug Metab. Disp.,10, 676–679.

    CAS  Google Scholar 

  6. Marcucci F., Fanelli R., Mussini E. and Garattini S. (1970): Effect of phenobarbital on thein vitro metabolism of diazepam in several animal species. Biochem. Pharmacol.,19, 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  7. Klotz U. and Reimann I. (1981): Clearance of diazepam can be impaired by its major metabolite desmethyldiazepam. Eur. J. Clin. Pharmacol.,21, 161–163.

    Article  CAS  PubMed  Google Scholar 

  8. Klotz U., Antonin K.H. and Bieck P.R. (1976): Comparison of the pharmacokinetics of diazepam after single and subchronic doses. Eur. J. Clin. Pharmacol.,10, 121–126.

    Article  CAS  PubMed  Google Scholar 

  9. Bast A., Scheefhals L.W.C. and Noordhoek J. (1982): Dose-dependent kinetics of aminopyrine metabolism in the rat caused by product inhibition and determined by capillary GLC. Pharmacology,25, 130–137.

    Article  CAS  PubMed  Google Scholar 

  10. Labout J.J.M., Thijssen C.T., Keijser G.G.J., and Hespe W. (1982): Difference between single and multiple dose pharmacokinetics of orphenadrine hydrochloride in man. Eur. J. Clin. Pharmacol.,21, 343–350.

    Article  CAS  PubMed  Google Scholar 

  11. Levy G. and Ashley J.J. (1973): Effect of an inhibitor of glucuronide formation on elimination kinetics, of diphenylhydantoin in rats. J. Pharmaceut. Sci.,62, 161–162.

    Article  CAS  Google Scholar 

  12. Von Bahr C. and Bertilsson L. (1971): Hydroxylation and subsequent glucuronide conjugation of desmethylimipramine in rat liver microsomes. Xenobiotica,1, 205–212.

    Article  Google Scholar 

  13. Bast A. and Noordhoek J. (1980): Calculation of competitive inhibition of substrate binding to cytochrome P-450 illustrated by the interaction of d, 1-propranolol with d, 1-hexobarbital. Biochem. Pharmacol.,29, 747–751.

    Article  CAS  PubMed  Google Scholar 

  14. Bast A. and Noordhoek J. (1981): Evaluation and comparison of colorimetric, radiometric and high performance liquid chromatographic assays for aminopyrine-N-demethylation by rat liver microsomes. J. Pharm. Pharmacol.,33, 14–18.

    CAS  PubMed  Google Scholar 

  15. Bertagni P., Marcucci F., Mussini E. and Garattini S. (1972): Biliary excretion of conjugated hydroxyl benzodiazepines after administration of several benzodiazepines to rats, guinea pigs, and mice. J. Pharmaceut. Sci.,61, 965–966.

    Article  CAS  Google Scholar 

  16. Inaba T., Tsutsumi E., Mahon W.A. and Kalow W. (1974): Biliary excretion of diazepam in the rat. Drug Metab. Disp.,2, 429–432.

    CAS  Google Scholar 

  17. Vree T.B., Baars A.M., Hekster Y.A., Van der Kleijn E. and O’Reilly W.J. (1979): Simultaneous determinations of diazepam and its metabolites N-desmethyldiazepam, oxydiazepam and oxazepam in plasma and urine of man and dog by means of high-performance liquid chromatography. J. Chromat.,162, 605–614.

    Article  CAS  Google Scholar 

  18. Savenije-Chapel E.M., Bast A. and Noordhoek J. (1983): Interaction of uridine 5′-diphosphoglucuronic acid (UDPGA) with cytochrome P-450. J. Pharm. Pharmacol.,35, 522–523.

    CAS  PubMed  Google Scholar 

  19. Bast A. and Noordhoek J. (1981): Product inhibition during the hepatic microsomal N-demethylation of aminopyrine in the rat. Biochem. Pharmacol.,30, 19–24.

    Article  CAS  PubMed  Google Scholar 

  20. Lennard M.S., Tucker G.T. and Woods H.F. (1978): Dose-, time- and sex-dependent metabolism of lignocaine in the isolated perfused rat liver. Abstracts 7th International Congress of Pharmacology. Pergamon Press, Oxford, p. 836, abstract 2587.

    Google Scholar 

  21. Konishi M., Agoh T., Sato T., Konaka R. and Mori Y. (1980): Metabolism and disposition of peptido-aminobenzophenone (2-0-chlorobenzoyl-4-chloro-N-methyl-N’-glycylglycinanilide) and its major benzodiazepine metabolites in dogs. Drug Metab. Disp.,8, 253–259.

    CAS  Google Scholar 

  22. Von Bahr C. and Orrenius S. (1971): Spectral studies on the interaction of imipramine and some of its oxidized metabolites with rat liver microsomes. Xenobiotica,1, 69–78.

    Article  Google Scholar 

  23. Ashley J.J. and Levy G. (1972): Inhibition of diphenyl-hydantoin elimination by its major metabolite. Res. Comm. Chem. Path. Pharmacol.,4, 297–306.

    CAS  Google Scholar 

  24. DePierre J.W., Moron M.S., Johannesen K.A.M. and Ernster L. (1975): A reliable, sensitive and convenient radioactive assay for benzpyrene monooxygenase. Anal. Biochem.,63, 470–484.

    Article  CAS  PubMed  Google Scholar 

  25. Rendic S. and Kajfez F. (1982): Stereochemical characterization of interactions of chiral 1,4-benzodiazepine-2-ones with liver microsomes. Eur. J. Drug Metab. Pharmacokin.,7, 137–146.

    CAS  Google Scholar 

  26. Abernethy D.R. and Greenblatt D.J. (1981): Effects of desmethyl-diazepam on diazepam kinetics: A study of effects of a metabolite on parent drug disposition. Clin. Pharmacol. Ther.,29, 757–761.

    CAS  PubMed  Google Scholar 

  27. Bock K.W. (1978): Increase of liver microsomal benzo(a)pyrene monooxygenase activity by subsequent glucuronidation. Naunyn-Schmiedeberg’s Arch. Pharmacol,304, 77–79.

    Article  CAS  Google Scholar 

  28. Fahl W.E., Shen A.L. and Jefcoate C.R. (1978): UDP-glucuronosyl transferase and the conjugation of benzo(a)pyrene metabolites t o DNA. Biochem. Biophys. Res. Comm.,85, 891–899.

    Article  CAS  PubMed  Google Scholar 

  29. Groothuis G. (1982): Acinar heterogeneity of hepatocytes in transport functions. Thesis, State University of Groningen.

  30. Bass L. (1981): Functional zones in the liver. Gastroenterology,81, 976–977.

    CAS  PubMed  Google Scholar 

  31. Garattini S., Marcucci F. and Mussini E. (1972): Benzodiazepine metabolismin vitro. Drug Metab. Rev.,1, 291–309.

    Article  CAS  Google Scholar 

  32. Berte F., Benzi G., Manzo L. and Hokari S. (1968): Investigation on tissue distribution and metabolism of oxazepam in pregnant guinea-pig and rat. Arch. int. Pharmacodyn.,173, 377–381.

    CAS  PubMed  Google Scholar 

  33. Conway J.G., Kauffman F.C., Ji S. and Thurman R.G. (1982): Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule. Mol. Pharmacol.,22, 509–516.

    CAS  PubMed  Google Scholar 

  34. Schwartz M.A., Koechlin B.A., Postma E., Palmer S. and Krol G. (1965): Metabolism of diazepam in rat, dog, and man. J. Pharmacol. Exp. Then,149, 423–435.

    CAS  Google Scholar 

  35. Lesca P., Beaune P. and Monsarrat B. (1981): Ellipticines and human liver microsomes: Spectral interaction with cytochrome P-450 and hydroxylation. Inhibition of aryl hydrocarbon metabolism and mutagenicity. Chem. Biol. Interact.,36, 299–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savenije-Chapel, E.M., Bast, A. & Noordhoek, J. Inhibition of diazepam metabolism in microsomal-and perfused liver preparations of the rat by desmethyldiazepam, N-methyloxazepam and oxazepam. European Journal of Drug Metabolism and Pharmacokinetics 10, 15–20 (1985). https://doi.org/10.1007/BF03189692

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03189692

Key-words

Navigation