Dose dependent tiracizine disposition in healthy volunteers: serum and urine kinetics and dose related ECG-changes

  • A. Berndt
  • Th. Gramatté
  • R. Oertel
  • K. Richter
  • B. Terhaag
  • W. Kirch


The pharmacokinetics of tiracizine, a new class I antiarrhythmic agent, and 3 of its metabolites were assessed in serum and urine of 8 healthy extensive metabolisers after single oral administration of 50, 100, and 200 mg tiracizine hydrochloride. Additionally, tiracizine induced ECG-changes were compared between the different doses. With increasing doses enhancement of AUC and Cmax of tiracizine and its metabolites revealed a slight deviation from linearity indicated by exceeding the upper limits of the 95% nonparametric confidence interval set by 0.8–1.2 for the ratio (dose corrected parameters after the 100 and 200 mg dose, respectively)/(parameters after 50 mg). The increase of the dose corrected parameters after the 200 mg dose was about 1.3-fold compared with the 50 mg parameters for the parent compound as well as its metabolites. The significant decrease of the renal clearance of all 4 substances with increasing doses indicates that saturable tubular secretion mainly accounts for non-linearity. Due to the occurrence of non-linear (tubular secretion) as well as linear (glomerular filtration, hepatic metabolism) elimination in parallel, however, it is concluded that saturable tubular secretion is of minor importance at higher doses and should not be overestimated. However, there was some evidence for saturable hepatic tiracizine metabolism in 4 of the 8 participants. Therefore, a fall of apparent intrinsic clearance has also to be taken into consideration, especially at higher doses.

PQ- and QRS-intervals were prolonged in a dose dependent manner and culminated at 1 h after drug intake. QTc-time, however, remained unchanged. A log-linear relationship between serum concentrations of the parent compound and PQ- and as well as QRS-time is suspected for serum levels about 80 ng/ml, but has to be confirmed by individual pharmacokinetic-pharmacodynamic modelling. PQ- and QRS-intervals might be suitable for tiracizine therapeutic monitoring.


Tiracizine antiarrhythmics metabolite kinetics non-linear kinetics dose-effect relationship ECG intervals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nilius B., Schulttler K., Benndorf K., Boldt W. (1985): Electrophysiological effects of the new antiarrhythmic compound Bonnecor® on mammalian myocardium. Pharmazie, 40, 847–851.PubMedGoogle Scholar
  2. 2.
    Assmann I., Kassel P., von Knorre G. (1990): Haemodynamische Studien und klinische Untersuchungen mit Bonnecor® — einem neuen Antiarrhythmikum. Z. Gesamte Inn. Med., 45, 703–708.PubMedGoogle Scholar
  3. 3.
    Rostock K.J., Rathgen K., Rostock G., Volkmann H., Pfeiffer D. (1990): Klinische Wirksamkeit von Bonnecor® bei oraler Langzeitgabe. Medicamentum, 31, 53–57.Google Scholar
  4. 4.
    Volkmann H., Rostock K.J. (1990): Klinische Wirksamkeit von Tiracizin bei intravenöser Applikation. Medicamentum, 31, 26–29.Google Scholar
  5. 5.
    Volkmann H., Kuhnert H., Dannberg G., Heinke M., Leeder U., Popp U. (1991): Elektrophysiologische und antiarrhythmische Effekte von Tiracizin bei ventrikulären Arrhythmien. Z. Gesamte Inn. Med., 46, 635–641.PubMedGoogle Scholar
  6. 6.
    Berndt A., Oertel R., Richter K., Terhaag B., Gramatté Th. (1995): Serum and urine kinetics of the new antiarrhythmic agent tiracizine — single dose and steady state kinetics. Biopharm. Drug Dispos., Submitted.Google Scholar
  7. 7.
    Rostock K.J., Rostock G. (1992): Pharmakokinetik von Tiracizin und seinen Metaboliten. In: Rostock K.J. (ed.) Bonnecor® (Tiracizin) ein neues Antiarrhythmikum. Berlin, Akademie Verlag.Google Scholar
  8. 8.
    Nilius B. (1985): Electrical effects of the new antiarrhythmic compound Bonnecor® under arrythmogenic conditions. Pharmazie, 40, 855–856.PubMedGoogle Scholar
  9. 9.
    Brosen K., Gram L.F. (1989): Clinical significance of the sparteine debrisoquine oxidation polymorphism. Eur. J. Clin. Pharmacol., 36, 537–547.CrossRefPubMedGoogle Scholar
  10. 10.
    Jainta H. (1994): Pharmacokinetics of tiracizine in various animals. Thesis. Martin Luther Universität Halle-Wittenberg, Biochemical Faculty, Halle, Germany.Google Scholar
  11. 11.
    Berndt A., Oertel R., Terhaag B., Richter K., Gramatté Th. (1994): Food enhances bioavailability of the new antiarrhythmic agent tiracizine by affecting its hepatic first pass metabolism: evidence by serum and urine metabolite kinetics. Am. J. Ther., 1, 22–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Brockmeier D., Lückel G. (1991): HOEREP-PC, an interactive program package for the analysis of pharmacokinetic data. User manual. Internal report. Frankfurt/Main, Hoechst AG.Google Scholar
  13. 13.
    Bazett H.C. (1920): Analyses of the time relations of electrocardiogram. Heart, 7, 353.Google Scholar
  14. 14.
    Steinijans V.W., Diletti E. (1983): Statistical analyses of bioavailability studies: parametric and nonparametric confidence intervals. Eur. J. Clin. Pharmacol., 24, 127–136.CrossRefPubMedGoogle Scholar
  15. 15.
    van Ginneken C.A.M., Russel F.G.M. (1989): Saturable pharmacokinetics in the renal excretion of drugs. Clin. Pharmacokinet., 16, 38–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Somogyi A. (1987): New insights into the renal secretion of drugs. TIPS, 8, 354–357.Google Scholar
  17. 17.
    Fleck C., Schilder L., Schulze U., et al. (1990): Möglichkeiten zur Beschleunigiung der Elimination von Bonnecor®. Z. Gesamte. Inn. Med., 45, 604–609.PubMedGoogle Scholar
  18. 18.
    Heisenbuttel R.H., Bigger J.T. (1970): The effect of quinidine on intraventricular conduction in man: correlation of plasma quinidine with changes in QRS-duration. Am. Heart J., 80, 453–462.CrossRefGoogle Scholar
  19. 19.
    Holford N.H.G., Guentert T.W., Riegelmann S., Sheiner L.B. (1981): The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: concentration-effect relationships. Br. J. Clin. Pharmacol., 11, 187–195.PubMedGoogle Scholar
  20. 20.
    Woosley R.L. (1988): Role of plasma concentration monitoring in the evaluation of response to antiarrhythmic drugs. Am. J. Cardiol., 62, 7H-9H.Google Scholar
  21. 21.
    Fagan T.C., Conrad K.A., Mar J.H., Nelson L. (1986): Effects of meal on haemodynamics: implications for antihypertensive studies. Clin. Pharmacol. Ther., 39, 255–260.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Berndt
    • 1
  • Th. Gramatté
    • 1
  • R. Oertel
    • 1
  • K. Richter
    • 1
  • B. Terhaag
    • 2
  • W. Kirch
    • 1
  1. 1.Institut für Klinische Pharmakologie Universitätsklinikum der T U DresdenDresdenGermany
  2. 2.Arneimittelwerk Dresden GmbhDresdenGermany

Personalised recommendations