Chinese Science Bulletin

, Volume 46, Issue 6, pp 505–508 | Cite as

Anomalously high δD and micro-scale hydrogen isotope heterogeneities in the mantle: Ion microprobe analysis of amiboles from peridotite xenoliths at Nushan, eastern China

  • Qunke Xia
  • Daogong Chen
  • Etienne Deloule
  • Xiachen Zhi
  • Hao Cheng
  • Yuanbao Wu


Hydrogen isotopic compositions of four amphibole grains from three pieces of lherzolite xenoliths in Cenozoic basanites of Nushan, eastern China have been analyzed by ion microprobe. δD values of all analyzed points range from −94‰ to +46‰, some of which are much higher than the highest δD (+8‰) reported previously for mantle materials. The heterogeneities of D/H ratios within single grains have been observed, the variation of δD is up to 80‰ on the scale of less than 400 μm. No correlation between hydrogen isotopic ratios and hydrogen contents can be found, implying that the scatter of δD values could not result from a late shallow process such as hydrogen loss or hydrothermal alterations and should be considered as inherited from the source at depth. Chemical compositions of Nushan amphiboles are very homogeneous, excluding the fact that the scatter of δD values could arise from variable fractionation factors between a single fluid source and minerals. Therefore, metasomatic fluids responsible for the formation of Nushan amphiboles should be heterogeneous and result in the observed large variable and anomalously high δD values of amphiboles. We suggested that such metasomatic fluids could be related to magma degassing in the mantle source. Based on the D-H diffusion data and the scale of hydrogen isotope heterogeneities, it was inferred that the mantle metasomatism took place soon before the eruption of host magma.


hydrogen isotope heterogeneity high δD amphibole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deloule, E., France-Lanord, C., Albarede, F., D/H analysis of minerals by ion probe (eds. Taylor, H. P., O’Neil, J. R., Kaplan, I. R.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, The Geochemical Society, Special Publication No.3, 1991, 53 – 62.Google Scholar
  2. 2.
    Deloule, E., Albarede, F., Sheppard, S. M. F., Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks, Earth Planet Sci. Lett., 1991, 105: 543.CrossRefGoogle Scholar
  3. 3.
    Graham, C. M., Kinny, P. D., Harte, B. et al., The nature and scale of stable isotope disequilibrium in the mantle: Ion and laser microprobe evidence, Mineral Mag., 1994, 58A: 345.CrossRefGoogle Scholar
  4. 4.
    Wagner, C., Deloule, E., Mokhtari, A., Richterite-bearing peridotites and MARID-type inclusions in lavas from North Eastern Morocco: mineralogy and D/H isotopic studies, Contrib. Mineral. Petrol., 1996, 124: 406.CrossRefGoogle Scholar
  5. 5.
    Kuroda, Y., Suzuoki, T., Matsuo, S., Hydrogen isotope composition of deep-seated water, Contrib. Mineral. Petrol., 1977, 60: 311.CrossRefGoogle Scholar
  6. 6.
    Boettcher, A. L., O’Neil, J. R., Stable isotope, chemical and petrographic studies of high pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites, Am. J. Sci., 1980, 280A: 594.Google Scholar
  7. 7.
    Kyser, T. K., O’Neil, J. R., Hydrogen isotopes systematics of submarine basalts, Geochim. Cosmochi. Acta, 1984, 48: 2123.CrossRefGoogle Scholar
  8. 8.
    Kyser, T. K., Stable isotope variations in the mantle stable isotopes in high temperature geological processes (eds. Valley, J. W., Taylor, H. P., O’Neil, J. R.), Mineral. Soc. Am., 1986(2): 141.Google Scholar
  9. 9.
    Bell, D. R., Rossman, G. R., Water in the earth’s mantle: the role of nominally anhydrous minerals, Science, 1992, 255: 1391.CrossRefGoogle Scholar
  10. 10.
    Ingrin, J., Skogby H., Hydrogen in nominally anhydrous upper mantle minerals: Concentration levels and implications, Eur. J. Mineral., 2000, 12: 543.Google Scholar
  11. 11.
    Bell, D. R., Ihinger, P. D., The isotopic composition of hydrogen in nominally anhydrous mantle minerals, Geochim. Cosmochi. Acta., 2000, 64(12): 2109.CrossRefGoogle Scholar
  12. 12.
    Dyar, D. M., Martin, S. V., Mackwell, S. J. et al., Crystal chemistry of Fe3+, H+ and D/H in mantle-derived augite from Dish Hill: Implications for alteration during transport (eds. Dyar, M. D., McCammon, C., Schaefer, M. W.), Mineral Spectroscopy: A tribute to Rogers G Burns, The Geochemical Society, Special Publication No. 5, 1996, 287–301.Google Scholar
  13. 13.
    Xu, Y. G., Mercier, J. C., Lin, C. Y., Amphibole-bearing peridotite xenoliths from Nushan, Anhui Province: evidence for melt percolation process in the upper mantle and lithospheric uplift, Chinese J. Geochem., 1997, 16(3): 213.CrossRefGoogle Scholar
  14. 14.
    Xu, X. S., O’Reilly, S. Y., Griffin, W. L. et al., The nature of the Cenozoic lithosphere at Nushan, eastern China (eds. Flower, F. J., Chung, S. L., Lo, C. H.), Mantle dynamics and plate interactions in east China, Geodynamics Series 27, Am. Geophy. Union, Washington D C, 1998, 167–196.Google Scholar
  15. 15.
    Menzies, M. A., Rogers, N., Tindle, A. et al., Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction, Mantle Metasomatism, London (eds. Menzies, M. A.), 1987, 313–360.Google Scholar
  16. 16.
    Suzuoki, T., Epstein, S., Hydrogen isotope fractionation between OH-bearing minerals and water, Geochim. Cosmochi. Acta, 1976, 40: 1229.CrossRefGoogle Scholar
  17. 17.
    Ihinger, P. D., Zhang, Y. X., Stopler, E. M., The speciation of dissolved water in rhyolitic melt, Geochim. Cosmochim. Acta, 1999, 63(21): 3567.CrossRefGoogle Scholar
  18. 18.
    Taylor, B. E., Isotopic variation of C, H and S stable isotopes in high temperature geological processes Mineral Soc. Am. (eds. Valley, J. W., Taylor, H. P., O’Neil, J. R.), 1986(2): 185.Google Scholar
  19. 19.
    Dobson, P. F., Epstein, S., Stolper, E. M., Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low temperature, Geochim. Cosmochim. Acta, 1989, 53: 2723.CrossRefGoogle Scholar
  20. 20.
    Pineau, F., Shilobreeva, S., Kadik, A. et al., Water solubility and D/H fractionation in the system basaltic andesite-H2O at 1 250 °C and between 0.5 and 3 kbars, Chem. Geol., 1998, 147: 173.CrossRefGoogle Scholar
  21. 21.
    Horibe, Y., Craig, H., D/H fractionation in the system methane —hydrogen-water, Geochim. Cosmochim. Acta, 1995, 59(24): 5209.CrossRefGoogle Scholar
  22. 22.
    Graham, C. M., Harmon, R. S., Sheppard, S. M. F., Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water, Am. Mineral., 1984, 69: 128.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Qunke Xia
    • 1
  • Daogong Chen
    • 1
  • Etienne Deloule
    • 2
  • Xiachen Zhi
    • 1
  • Hao Cheng
    • 1
  • Yuanbao Wu
    • 1
  1. 1.Department of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CRPG-CNRSVandoeuvre CedexFrance

Personalised recommendations