Advertisement

Chinese Science Bulletin

, Volume 46, Issue 9, pp 761–765 | Cite as

Involvement of heterotrimeric G protein in signal transduction of extracellular calmodulin in regulatingrbcS expression

  • Yi Guo
  • Ligeng Ma
  • Lu Zhang
  • Daye Sun
Notes
  • 23 Downloads

Abstract

The role of heterotrimeric G protein in signal transduction pathway of extracellular calmodulin in regulatingrbcS expression was examined in suspension-cultured cells of transgenic tobacco. Pharmalogical experiments indicated that G protein agonist cholera toxin enhancedrbcS expression and heterotrimeric G protein antagonist pertussis toxin inhibitedrbcS expression in transgenic tobacco cells. Pertussis toxin also inhibited the enhancement effect caused by exogenous purified calmodulin onrbcS expression, whereas cholera toxin completely reversed the inhibitory effects caused by anti-calmodulin serum onrbcS expression. The right side-out vesicles from tobacco cell membrane were purified, which contained all of substrates for fluometric assay of GTPase activity. Exogenous purified calmodulin, when adding directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in the right side-out plasma membrane vesicles, and this increase in GTPase activity was completely inhibited both by heterotrimeric G proteins antagonist pertussis toxin and nonhydrolyzable GTP analogs GMP-PCP. These results provided the evidence that heterotrimeric G proteins may be involved in signal transduction pathways of extracellular calmodulin to regulaterbcS gene expression.

Keywords

extracellular calmodulin heterotrimeric G proteins rbcS expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilman, A. G., G proteins: transducers of receptor-generated signals, Annu.Rev.Biochem., 1987, 56: 615.CrossRefGoogle Scholar
  2. 2.
    Ma, H., GTP-binding proteins in plants: new members of an old family, Plant Mol. Biol., 1994, 26: 1611.CrossRefGoogle Scholar
  3. 3.
    Seo, H. S., Kim, H. Y., Jeong, J. Y. et al., Molecular cloning and characterization of RGA1 encoding a G protein α subunit from rice (Oryza sativa L. IR-36), Plant Mol. Biol., 1995, 27: 1119.CrossRefGoogle Scholar
  4. 4.
    Gotor, C., Lam, E., Cejudo, F. J. et al., Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal transducers, Plant Mol. Biol., 1996, 32: 1227.CrossRefGoogle Scholar
  5. 5.
    Bowler, C., Neuhaus, G., Yamagata, H. et al., Cyclic GMP and calcium mediated phytochrome phototransduction, Cell, 1994, 77: 73.CrossRefGoogle Scholar
  6. 6.
    Calenberg, M., Brohsonn, V., Zedlacher, M. et al., Light- and Ca2+-modulated heterotrimeric GTPase in the eyespot apparatus of a flagellate green alga, Plant Cell, 1998, 10: 91.CrossRefGoogle Scholar
  7. 7.
    Zhou, J. L., Ma, L.G., Sun, D.Y., Effects of G protein and cGMP on phytochrome-mediated amaranthin synthesis inAmaranthus caudatus seedlings, Science in China, Ser. C, 1998, 41(3): 232.CrossRefGoogle Scholar
  8. 8.
    Jones, H. D., Smith, S. J., Desikan, R. et al., Heterotrimeric G proteins are implicated in gibberellin induction of α-amylase gene expression in wild oat aleurone, Plant Cell, 1998, 10: 245.CrossRefGoogle Scholar
  9. 9.
    Beffa, R., Szell, M., Meuwly, P. et al., Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco, EMBO J, 1995, 14: 5753.Google Scholar
  10. 10.
    Legendre, L., Heinstein, P. F., Low, P. S., Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells, J. Chem. Biol., 1992, 267: 20140.Google Scholar
  11. 11.
    Wu, W. H., Assmann, S. M., A membrane-delimited pathway of G-protein regulation of guard cell inward K+channel, Proc. Natl. Acad. Sci. USA, 1994, 91: 6310.CrossRefGoogle Scholar
  12. 12.
    Biro, R. L., Sun, D. Y., Serlin, B. S. et al., Characterization of oat calmodulin and radioimunoassay of its subcellular distribution, Plant Physiol., 1984, 75: 382.CrossRefGoogle Scholar
  13. 13.
    Sun, D. Y., Li, H. B., Cheng, G., Extracellular calmodulin accelerates the proliferation of suspension-cultured cells ofAugelica dahurica, Plant Sci., 1994, 99: 1.CrossRefGoogle Scholar
  14. 14.
    Sun, D. Y., Bian, Y. Q., Zhao, B. H. et al., The effect of extracellular calmodulin on cell wall regeneration and the division of protoplasts, Plant Cell Physiol., 1995, 36: 133.Google Scholar
  15. 15.
    Ma, L. G., Sun, D. Y., The effects of extracellular calmodulin on initiation ofHippeastrum rutilum pollen germination and tube growth, Planta, 1997, 202: 336.CrossRefGoogle Scholar
  16. 16.
    Ma, L. G., Zhou, J. L., Zhang, S. Q. et al., Extracellular calmodulin acceleratesrbcS-GUS expreesion in suspension-cultured cell of transgenic tobacco, Chinese Science Bulletin, 2000, 45(22): 2089.CrossRefGoogle Scholar
  17. 17.
    Ma, L. G., Xu, X. D., Cui, S. J. et al., The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth, Plant Cell, 1999, 11: 1351.CrossRefGoogle Scholar
  18. 18.
    Jefferson, R. A., Kavanagh, T. A., Bevan, M. W., GUS fusions: β-glucuronidas as a sensitive and versatile gene fusion marker in higher plant, EMBO J, 1987, 6: 3901.Google Scholar
  19. 19.
    Larsson, C., Widell, S., Kjellbom, P., Preparation of high purity plasma membrane, Method Enzymol., 1987, 148: 558.CrossRefGoogle Scholar
  20. 20.
    Wang, K. R., Xue, S. B., Liu, H. T., Cell Biology, Beijing: Press of Peking Normal University, 1990, 373.Google Scholar
  21. 21.
    Sun, D. Y., The Universality and biological significance of signal molecules with intracellular—extracellular compatible function, Chinese Science Bulletin, 1999, 44(15): 1576.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.Institute of Molecular Cell BiologyHebei Normal UniversityShijiazhuangChina

Personalised recommendations