Chinese Science Bulletin

, Volume 46, Issue 4, pp 271–278 | Cite as

Structure and regulatory function of plant transcription factors

  • Qiang Liu
  • Guiyou Zhang
  • Shouyi Chen


The expression of inducible genes in plants is regulated by specific transcription factors at the transcriptional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulation domain, a dimerization site and a nuclear localization domain. These functional domains define the characteristic, localization and regulatory role of a transcription factor. Transcription factors recognize and bind to specificcis-acting elements or interact with other proteins, and then activate or repress the transcription of target genes by their functional domains. In recent years, elucidation on the structure and function of transcription factors has become an important subject in plant molecular biology.


transcription factor DNA-binding domain cis-acting element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nantel, A., Quatrano, R. S., Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity, J. Biol. Chem., 1996, 271: 31296.CrossRefGoogle Scholar
  2. 2.
    Takatsuji, H., Zinc-finger transcription factors in plant, Cell Mol. Life Sci., 1998, 54: 582.CrossRefGoogle Scholar
  3. 3.
    Rounsley, S. D., Ditta, G. S., Yanofsky, M. F., Diverse roles for MADS box genesin Arabidopsis development, Plant Cell, 1995, 7: 1259.CrossRefGoogle Scholar
  4. 4.
    Abe, H., Yamaguchi-Shinozaki, K., Urao, T. et al., Role ofArabidopsis MYC and MYB homologs in droughtand abscisic acid-regulated gene expression, Plant Cell, 1997, 9: 1859.CrossRefGoogle Scholar
  5. 5.
    Martin, C., Paz-Ares, J., MYB transcription factors in plants, Trends Genet, 1997, 13: 67.CrossRefGoogle Scholar
  6. 6.
    Klinge, B., Uberlacker, B., Korfhage, C. et al.,ZmHox: a novel class of maize homeobox genes, Plant Mol. Biol., 1996, 30: 439.CrossRefGoogle Scholar
  7. 7.
    Riechmann, J. L., Meyerowitz, E. M., The AP2/EREBP family of plant transcription factors, Biol. Chem., 1998, 379: 633.CrossRefGoogle Scholar
  8. 8.
    Liu, L., White, M. J., MacRae, T. H., Transcription factors and their genes in higher plants, Eur. J. Biochem., 1999, 262: 247.CrossRefGoogle Scholar
  9. 9.
    Bobb, A. J., Eiben, H. G., Bustos, M. M., PvALF, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters, Plant J., 1996, 8: 331.CrossRefGoogle Scholar
  10. 10.
    Schwechheimer, C., Bevan, M., The regulation of transcription factor activity in plants, Trend in Plant Science, 1998, 3(10): 278.Google Scholar
  11. 11.
    Sainz, M. B., Goff S. A., Chandler, V. L., Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activationin vivo, Mol. Cell. Biol., 1997, 17: 115.Google Scholar
  12. 12.
    Chern, M. S., Bobb, A. J., Bustos, M. M., The regulator of MAT2(ROM2) protein binds to early maturation promoters and repressors PvALF activated transcription, Plant Cell, 1996, 8: 305.CrossRefGoogle Scholar
  13. 13.
    Kriz, A. L., Wallace, M. S., Paiva, R., Globulin gene expression in embryos of maizevivparous mutants, Plant Physiol., 1990, 92: 5538.CrossRefGoogle Scholar
  14. 14.
    Boulikas, T., Putative nuclear localization signals(NLS) in protein transcription factors, J. Cell. Biochem., 1994: 55: 32.CrossRefGoogle Scholar
  15. 15.
    Dehesh, K., Smith, L. G., Tepperman, J. M. et al., Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2, Plant J., 1995, 8: 25.CrossRefGoogle Scholar
  16. 16.
    Lyck, R., Harmening, U., Hohfeld, I. et al., Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors, Planta, 1997, 202: 117.CrossRefGoogle Scholar
  17. 17.
    Varagona, M. J., Schmidt, R. J., Raikhel, N. V., Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2, Plant Cell, 1992, 4: 1213.CrossRefGoogle Scholar
  18. 18.
    Abel, S., Theologis, A., A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pimm sativum), Plant J., 1995, 8: 87.CrossRefGoogle Scholar
  19. 19.
    Varagona, M. J., Raikhel, N. V., The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization, Plant J., 1994, 5: 207.CrossRefGoogle Scholar
  20. 20.
    Goff, S. A., Cone, K. C., Chandler, V. L., Functional analysis of the transcriptional activator encoded by the maizeB gene: evidence for a direct functional interaction between two classes of regulatory proteins, Genes Dev, 1992, 6: 864.CrossRefGoogle Scholar
  21. 21.
    Goff, S. A., Cone, K. C., Fromm, M. E., Identification of functional domains in the maize transcriptional activator Cl: comparison of wild-type and dominant inhibitor proteins, Genes Dev., 1991, 5: 298.CrossRefGoogle Scholar
  22. 22.
    Klimczak, L. J., Collinge, M. A., Farini, D. et al., Reconstitution ofArabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1, Plant Cell, 1995, 7: 105.CrossRefGoogle Scholar
  23. 23.
    Ciceri, P., Gianazza, E., Lazzari, B. et al., Phosphorylation of Opaque2 changes diurnally and impacts its DNA Binding activity, Plant Cell, 1997, 9: 97.CrossRefGoogle Scholar
  24. 24.
    Vincentz-Carbajosa, J., Moose, S. P., Parsons, R. L. et al., A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2, Proc. Natl. Acad. Sci. USA, 1997, 94: 7685.CrossRefGoogle Scholar
  25. 25.
    Nantel, A., Quatrano, R. S., Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA-binding activity, J. Biol. Chem., 1996, 271: 31296.CrossRefGoogle Scholar
  26. 26.
    Schultz, T. F., Spiker, S., Quatrano, R. S., Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1, Journal Biol. Chem., 1996, 271: 25742.CrossRefGoogle Scholar
  27. 27.
    Bevan, M., Bancroft, I., Bent, E. et al., Analysis of 1.9 Mb of contiguous sequence from chromosome 4 ofArabidopsis thaliana, Nature, 1998, 391: 485.CrossRefGoogle Scholar
  28. 28.
    Kasuga, M., Liu, Q., Miura, S. et al., Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nature Biotechnology, 1999, 17: 287.CrossRefGoogle Scholar
  29. 29.
    Chattopadhyay, S., Ang, L. H., Puente, P. et al.,Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression, Plant Cell, 1998, 10: 673.CrossRefGoogle Scholar
  30. 30.
    Schmitz, D., Lohmer, S., Salamini, F. et al., The activation domain of the maize transcription factor Opaque-2 resides in a single acidic region, Nucleic Acid Research, 1997, 25: 756.CrossRefGoogle Scholar
  31. 31.
    Bass, H. W., Webster, C., Obrian, G. R. et al., A maize ribosome-inactivating protein is controlled by the transcriptional activatorOpaque-2, Plant Cell, 1992, 4: 225.CrossRefGoogle Scholar
  32. 32.
    Maddaloni, M., Donini, G., Balconi, C. et al., The transcriptional activatorOpaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate dikinase-1 in maize endosperms, Mol. Gen. Genet, 1996, 250: 647.Google Scholar
  33. 33.
    Pirovano, L., Lanzini, S., Hartings, H. et al., Structural and functional analysis of an Opaque-2-related gene from sorghum, Plant Mol. Biol., 1994, 24: 515.CrossRefGoogle Scholar
  34. 34.
    Albani, D., Hammond-Kosack, M. C. U., Smith, C. et al., The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes, Plant Cell, 1997, 9: 171.CrossRefGoogle Scholar
  35. 35.
    de Souza Filho, G. A., da Silva, M. J., Vettere, A. L. et al., Identification of a DNA-binding factor that recognizes an a-coixin promoter and interacts with aCoix Opaque-2-like protein, Plant Mol. Biol., 1999, 39: 95.CrossRefGoogle Scholar
  36. 36.
    Wu, C. Y., Suzuki, A., Washida, H. et al., The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants, Plant J., 1998, 14: 673.CrossRefGoogle Scholar
  37. 37.
    Pysh, L. D., Aukerman, M. J., Schmidt, R. J., OHP1: A maize basic bomain/leucine zipper protein that interacts with Opaque2, Plant Cell, 1993, 5: 227.CrossRefGoogle Scholar
  38. 38.
    Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N. et al., Cloning and characterization of two cDNAs encoding casein kinase II catalytic subunits inArabidopsis thaliana, Plant Mol. Biol., 1993, 21: 279.CrossRefGoogle Scholar
  39. 39.
    Okamuro, J. K., Caster, B., Villarroel, R. et al., The AP2 domain ofAPETALA2 defines a large new family of DNA binding proteins inArabidopsis, Proc. Natl. Acad. Sci. USA, 1997, 94: 7076.CrossRefGoogle Scholar
  40. 40.
    Allen, M. D., Yamasaki, K., Oheme-Takagi, M. et al., A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA, EMBO J., 1998, 17(18): 5484.CrossRefGoogle Scholar
  41. 41.
    Liu, Q., Kasuga, M., Sakuma, Y. et al, Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand low-temperature-responsive gene expression, respectively, inArabidopsis, Plant Cell, 1998, 10: 1391.CrossRefGoogle Scholar
  42. 42.
    Liu, Q., Zhao, N. M., Yamaguchi-Shinozaki, K. et al., Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance, Chinese Science Bulletin, 2000, 45(11): 970.CrossRefGoogle Scholar
  43. 43.
    McCarty, D. R., Genetic control and integration of maturation and germination pathways in seed development, Annu. Rev. Plant. Physiol. Plant Mol. Biol., 1995, 46: 71.CrossRefGoogle Scholar
  44. 44.
    Hattori, T., Vasil, V., Rosenkrans, L. et al., TheViviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize, Genes Dev, 1992, 6: 609.CrossRefGoogle Scholar
  45. 45.
    Kao, C. Y., Cocciolone, S. M., Vasil, I. K. et al., Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS 1, and light activation of theC1 gene of maize, Plant Cell, 1996, 8: 1171.CrossRefGoogle Scholar
  46. 46.
    Suzuki, M., Kao, C. Y., McCarty, D. R., The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity, Plant Cell, 1997, 9: 799.CrossRefGoogle Scholar
  47. 47.
    Vasil, I. K., Marcotte, Jr. W. R., Rosenkrans, L. et al., Overlap of Viviparous-1(VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation, Plant Cell, 1995, 7: 1511.CrossRefGoogle Scholar
  48. 48.
    Schultz, T. F., Medina, J., Hill, A. et al., 14-3-3 protein are part of an abscisic acid-VIVIPAROUS 1 (VP1) response complex in theEm promoter and interact with VP1 and EmBP1, Plant Cell, 1998, 10: 837.CrossRefGoogle Scholar
  49. 49.
    Hoecker, U., Vasil, I. K., McCarty, D. R., Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize, Genes Development 1995, 9: 2459.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.Department of Biological Science and BiotechnologyTsinghua UniversityBeijingChina
  2. 2.Department of Biological Science and Biotechnology, State Laboratory of Biomembrane and Membrane BiotechnologyTsinghua UniversityBeijingChina
  3. 3.Institute of GeneticsChinese Academy of SciencesBeijingChina

Personalised recommendations