Chinese Science Bulletin

, Volume 46, Issue 3, pp 184–188 | Cite as

Roles of histones and nucleosomes in gene transcription

  • Baiqu Huang
  • Qinhua Zeng
  • Xiaohui Bi
  • Yuhong Wang
  • Yuxin Li


This article reviews the latest research developments in the field of eukaryotic gene regulation by the structural alterations of chromatin and nucleosomes. The following issues are briefly addressed: (i) nucleosome and histone modifications by both the ATP-dependent remodeling complexes and the histone acetyltransferases and their roles in gene activation; (ii) competitive binding of histones and transcription factors on gene promoters, and transcription repression by nucleosomes; and (iii) influences of linker histone H1 on gene regulation. Meanwhile, the significance and impact of these new research progresses, as well as issues worthwhile for further study are commented.


histories nucleosome chromatin remoddeling gene transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kornberg, R. D., Eukaryotic transcriptional control. Trends Cell Biol., 1999, 9: M46.CrossRefGoogle Scholar
  2. 2.
    Emerson, B. M., Bagga, R., LXIII Cold Spring Harbot Symposium on Quantitative Biology: Mechanisms of transcription, Biochim. Biophys. Acta, 1999, 1423: R45.Google Scholar
  3. 3.
    Kingston, R. E., A shared but complex bridge, Nature, 1999. 399: 199.CrossRefGoogle Scholar
  4. 4.
    Workman, J. L., Kingston, R. E., Alteration of nucleosome structure as mechanism of transcriptional regulation, Annu. Rev, Biochem., 1998, 67: 545.CrossRefGoogle Scholar
  5. 5.
    Imbalzano, A. N., SWI/SNF complexes and facilitation of TATA-binding protein; nucleosome interactions. Methods, 1998, 15: 303.CrossRefGoogle Scholar
  6. 6.
    Moreira, J. M., Holmberg, S., Transcriptional repression of the yeast CHA1 gene requires chromatin-remodeling complexes RSC, EMBO J., 1999, 18: 2836.CrossRefGoogle Scholar
  7. 7.
    Tsukiyama, T., Daniel, C., Tamkun, J. et al., ISWI, a member of the SWT2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor, Cell, 1995, 83: 1021.CrossRefGoogle Scholar
  8. 8.
    Varga-Weisz P. D., Wilm, M., Bonte, E. et al. Chromatin remodeling factor CHRAC contains the ATPase ISWI and Topoisomerase II, Nature, 1997, 388: 598.CrossRefGoogle Scholar
  9. 9.
    Ito, T., Bulger, M., Pazin, M. J. et al., ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor, Cell, 1997, 90: 145.CrossRefGoogle Scholar
  10. 10.
    Xue, Y., Wong, J., Mereno, G. T. et al., NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities, Mol. Cell. 1998, 2: 851.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z., Buchman, A. R., Identification of a member of a DNA-dependent ATPase family that causes interference with silencing, Mol. Cell Biol., 1997, 17: 5461.Google Scholar
  12. 12.
    Logie, C., Peterson, C. L., Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays, EMBO J., 1997, 16: 6772.CrossRefGoogle Scholar
  13. 13.
    Brownell, J. E., Zhou, J., Ranalli, T. et al.,Tetrahvmena histone acetyltransferase: A homology to yeast GCN5p linking histone acetylation to gene activation, Cell, 1996, 84: 845.CrossRefGoogle Scholar
  14. 14.
    Spencer, T. E., Jenster, G., Burcin, M. M. et al., Steroid receptor coactivator-l is a histone acetyltransferase, Nature. 1997, 389: 1994.Google Scholar
  15. 15.
    Chen, H., Lin, R. J., Schlitz, R. L. et al., Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and form a multimeric activation complex with P/CAF and CBP/P300, Cell. 1997, 90: 569.CrossRefGoogle Scholar
  16. 16.
    Bannister, A. J., Kouzarides, T., The CBP coactivator is a histone acetyltransferase. Nature, 1996, 384: 641.CrossRefGoogle Scholar
  17. 17.
    Mizzen, C. A., Yang, X. J., Kokubo, T., et al., The TAP(II)250 subunit of TFIID has histone acetyltransferase activity, Cell, 1906, 87: 1261.CrossRefGoogle Scholar
  18. 18.
    Hansen, J. C., The core histone amino-termini: combinatorial interaction domains that link chromatin structure with function. Chem. Tracts Biochem. Mol. Biol., 1997, 10: 56.Google Scholar
  19. 19.
    Lusser, A., Brosch, G., Loidl, A. et al., Identification of maize histone deacetytase HD2 as an acidic nucleolar phosphoprotein. Science. 1997, 277: 88.CrossRefGoogle Scholar
  20. 20.
    Taunton, J., Hassig, C. A., Schreiber, S. L., A mammalian bistone deacetylase related to the yeast transcriptional regulator Rpd3p, Science, 1996, 272: 408.CrossRefGoogle Scholar
  21. 21.
    Pollard, K. J., Peterson, C. L., Chromatin remodeling: a marriage between two families BioEssays, 1998. 20: 771.CrossRefGoogle Scholar
  22. 22.
    Lee, K. M., Sif, S., Kingston, R. E., et al., hSWI/SNF disrupts interactions between the H2A N-terminal tail and nucleosomal DNA, Biochemistry, 1999, 38: 8423.CrossRefGoogle Scholar
  23. 23.
    Logie, C., Tse, C., Hansen, J. C. et al., The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes, Biochemistry, 1999, 38: 2514.CrossRefGoogle Scholar
  24. 24.
    Imbalzano, A. N., Kwon, H., Green, M. R. et al., Facilitated binding of TATA-binding protein to nucleosomal DNA, Nature, 1994, 370: 481.CrossRefGoogle Scholar
  25. 25.
    Felsenfield, G., Chromatin as an essential part of the transcriptional mechanism. Nature. 1992, 355: 219.CrossRefGoogle Scholar
  26. 26.
    Zeng, Q. H., Yin, D., Sun, Y. C. et al., Binding and interaction of histones and transcription factors on the promoter of hAMFR gene. Chinese J. Genel., 1999, 26: 213.Google Scholar
  27. 27.
    Lorch, Y., LaPointe, J. W., Kornberg, R. D., Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones, Cell, 1987, 49: 203.CrossRefGoogle Scholar
  28. 28.
    Studilsky, V. M., Clark, D. J., Felsenfeld, G., Overcoming a nucleosomal barrier to transcription. Cell. 1995, 83: 19.CrossRefGoogle Scholar
  29. 29.
    Whitehouse, I., Flaus, A., Cairns, B. R., et al., Nucleosome mobilization catalyzed by the yeast SWI/SNF complex. Nature, 1999, 400: 784.CrossRefGoogle Scholar
  30. 30.
    Hamiche, A., Sandaltzopoulos, R., Gdulc, D. A. et al., ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell, 1999, 97: 833.CrossRefGoogle Scholar
  31. 31.
    Zeng, Q. H., Yin, D., Sun, Y. C. et al., Effects ot the interaction between histones and hAMFR gene promoter on the transcription activityin vitro, Acta Genetica Sinica (in Chinese). 1999, 26151: 501.Google Scholar
  32. 32.
    Sandaltzopoulos, R., Blank, T., Becker, P. B. Transcriptional repression by nucleosome but not H1 in reconstituted preblastodermDrosophila chromatin, EMBO J., 1994, 13: 373.Google Scholar
  33. 33.
    Vermaak, D., Steinbach, O. C., Dimitrov, S. et al., The global domain of histone H1 is sufficient to direct specific gene repression in earlyXenopus embryos. Cun. Biol., 1998. 8: 533.CrossRefGoogle Scholar
  34. 34.
    Kandolf, H., The HIA bistone variant is anin vivo repressor of oocyte-type 5S gene transcription inXenopus taevis embiyos, Proc. Natl Acad. Sci. USA, 1994, 91: 7257.CrossRefGoogle Scholar
  35. 35.
    Shen, X., Gorovsky, M. A., Linker histone H1 regulates specific gene expression but not global transcriptionin vivo. Cell. 1996, 86. 475.CrossRefGoogle Scholar
  36. 36.
    Panetta, G., Buttinelli, M., Flaus, A. et al., Differential nucleosome positioning onXenopus oocyle and somatic 5S RNA genes determines both TFIIIA and HI binding: a mechanism for selective HI repression, J. Mol. Biol, 1998, 282: 683.CrossRefGoogle Scholar
  37. 37.
    Sera, T., Wolffe, A. P., Role of histone HI as an architectural determinant of chromatin structure and as a specific repressor of transcription onXenopus oocyte 5S rRNA genes. Mol. Cell. Biol., 1998, 18: 3668.Google Scholar
  38. 38.
    Zlatanova, J., van Holde, K., Linker histone versus HMG1/2: a struggle for dominance? BioEssays. 1998, 20: 587.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Baiqu Huang
    • 1
  • Qinhua Zeng
    • 1
  • Xiaohui Bi
    • 1
  • Yuhong Wang
    • 1
  • Yuxin Li
    • 1
  1. 1.Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina

Personalised recommendations