Metallurgical Transactions A

, Volume 7, Issue 11, pp 1747–1759 | Cite as

Dendritic growth-A test of theory

  • M. E. Glicksman
  • R. J. Schaefer
  • J. D. Ayers


Steady-state theories of dendritic solidification are reviewed, and three nonisothermal theories, expressed as simple power laws, are chosen for experimental verification. Specifically, the axial growth rate,V, of a freely growing dendrite can be expressed asV =βGΔθ n , wheren andβ are the exponent and prefactor derived from each theory,G is a lumped material parameter, andΔθ is the supercooling. Succinonitrile, a low entropy-of-fusion plastic crystal, was prepared in several states of purity as the test system, and dendritic growth was studied both in the usual manner in long tubes, and in a novel apparatus in which the conditions for “free” dendritic growth were attained. Kinetic measurements show that only when “free” growth conditions obtain are the data reconcilable with current theory in the form discussed above. In particular, we show thatn = 2.6, in agreement with the theories of Nash and Glicksman and that of Trivedi; however, the prefactorsβ of those theories do not agree with the value determined for succinonitrile, which is the only substance for whichG is known accurately. Tip radius measurements, taken over a relatively narrow range of supercooling, when combined with the growth rate data prove that the Peclet number-supercooling relationship derived for each of the three nonisothermal steady-state theoriesall agree with experiment. This curious agreement, along with the inability to “decompose” the Peclet numbers into acceptable velocity-supercooling and tip radius-supercooling relationships is explained on the basis of the limitations imposed by the steady-state assumption itself. Directions for future theoretical and experimental investigation are discussed in the light of the findings presented.


Metallurgical Transaction NASH Growth Velocity Dendritic Growth Peclet Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Weinberg and B. Chalmers:Can. J. Phys., 1951, vol. 29, p. 382.Google Scholar
  2. 2.
    F. Weinberg and B. Chalmers:Can. J. Phys., 1952, vol. 30, p. 488.Google Scholar
  3. 3.
    J. C. Fisher: Unpublished research reported inPrinciples ofSolidification, chap. 4, B. Chalmers, John Wiley & Sons, New York, 1964.Google Scholar
  4. 4.
    C. S. Lindenmeyer and B. Chalmers:J. Chern. Phys., 1966, vol. 45, p. 2807.CrossRefADSGoogle Scholar
  5. 5.
    T. Orrok: Ph.D. Thesis, Harvard University, 1958.Google Scholar
  6. 6.
    G. F. Bolling and W. A. Tiller:J. Appl. Phys., 1961, vol. 32, p. 2587.CrossRefADSGoogle Scholar
  7. 7.
    G. P. Ivantsov:Dokl. Akild. Nauk USSR, vol. 58, p. 567.Google Scholar
  8. 8.
    G. Horvay and J. W. Cahn:Acta Met., 1961, vol. 9, p. 695.CrossRefGoogle Scholar
  9. 9.
    D. E. Temkin:Dokl. Akild. Nauk USSR, vol. 132, p. 1307.Google Scholar
  10. 10.
    L. A. Tarshis and G. R. Kotlert:J. Cryst. Growth, 1968, vol. 2, p. 222.CrossRefADSGoogle Scholar
  11. 11.
    M. E. Glicksman and R. J. Schaefer:J. Cryst. Growth, 1967, vol. 1, p. 297.CrossRefADSGoogle Scholar
  12. 12.
    M. E. Glicksman and R. J. Schaefer:J. Cryst. Growth, 1968, vol. 2, p. 239.CrossRefADSGoogle Scholar
  13. 13.
    R. Trivedi:Acta Met., vol. 18, p. 287.Google Scholar
  14. 14.
    E. G. Holtzmann:J. Appl. Phys., 1970, vol. 41, p. 1460.CrossRefADSGoogle Scholar
  15. 15.
    E. G. Holtzmann:J. Appl. Phys., 1970, vol. 41, p. 4769.CrossRefADSGoogle Scholar
  16. 16.
    G. E. Nash and M. E. Glicksman:Acta Met., 1974, vol. 22, p. 1283.CrossRefGoogle Scholar
  17. 17.
    R. F. Sekerka, R. G. Seidensticker, D. R. Hamilton, and J. D. Harrison: “Investigation of Desalination by Freezing,”Westinghouse Research Lab Report, chap. 3, 1967.Google Scholar
  18. 18.
    J. Timmermans:J. Phys. Chern. Solids, 1961, vol. 18, p. 1.CrossRefADSGoogle Scholar
  19. 19.
    W. E. Fitzgerald and G. J. Janz:J. Mol. Spectrosc., 1957, vol. 1, p. 49.CrossRefADSGoogle Scholar
  20. 20.
    Claus A. Wulff and Edgar F. Westrum, Jr.:J. Phys. Chern., 1963, vol. 67, p. 2376.CrossRefGoogle Scholar
  21. 21.
    J. A. Blodgett, R. J. Schaefer, and M. E. Glicksman:Metallography, 1974, vol. 7. p. 453.CrossRefGoogle Scholar
  22. 22.
    E. B. Shand:Glass Engineering Handbook, p. 30, McGraw-Hill, New York, 1968.Google Scholar
  23. 23.
    M. E. Glicksman, J. D. Ayers, and R. J. Schaefer: Unpublished research, NRL,I975.Google Scholar
  24. 24.
    M. Jakob:Heat Transfer, vol. 1, John Wiley and Sons, New York, 1949.Google Scholar
  25. 25.
    D. E. Ovsienko, G. A. Alfintsev, and V. V. Maslov:J. Cryst. Growth, 1974, vol. 26, p. 233.CrossRefADSGoogle Scholar
  26. 26.
    R. J. Schaefer, M. E. Glicksman, and J. D. Ayers:Phil. Mag., 1975, vol. 32, p.725.CrossRefADSGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1976

Authors and Affiliations

  • M. E. Glicksman
    • 1
  • R. J. Schaefer
    • 2
  • J. D. Ayers
    • 2
  1. 1.Materials Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA
  2. 2.Science DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations