Skip to main content
Log in

Computer-assisted proofs for semilinear elliptic boundary value problems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

For second-order semilinear elliptic boundary value problems on bounded or unbounded domains, a general computer-assisted method for proving the existence of a solution in a “close” and explicit neighborhood of an approximate solution, computed by numerical means, is proposed. To achieve such an existence and enclosure result, we apply Banach’s fixed-point theorem to an equivalent problem for the error, i.e., the difference between exact and approximate solution. The verification of the conditions posed for the fixed-point argument requires various analytical and numerical techniques, for example the computation of eigenvalue bounds for the linearization at the approximate solution. The method is used to prove existence and multiplicity results for some specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, 3rd edition, de Gruyter, Berlin, 1978.

    MATH  Google Scholar 

  3. H. Behnke, Inclusion of eigenvalues of general eigenvalue problems for matrices. Scientific Computation with Automatic Result Verification, U. Kulisch and H.J. Stetter (eds.), Computing Suppl.,6 (1987), 69–78.

  4. H. Behnke and F. Goerisch, Inclusions for eigenvalues of selfadjoint problems. Topics in Validated Computations, J. Herzberger (ed.), Series Studies in Computational Mathematics, North-Holland, Amsterdam, 1994, 277–322.

    Google Scholar 

  5. B. Breuer, P.J. McKenna and M. Plum, Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differential Equations,195 (2003), 243–269.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Breuer, J. Horak, P.J. McKenna and M. Plum, A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam. J. Differential Equations,224 (2006), 60–97.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y.S. Choi and P.J. McKenna, A mountain pass method for the numerical solutions of semilinear elliptic problems. Nonlinear Anal. Theory Methods Appl.,20 (1993), 417–437.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Collatz, Aufgaben monotoner Art. Arch. Math.,3, (1952), 366–376.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Collatz, The Numerical Treatment of Differential Equations. Springer, Berlin-Heidelberg, 1960.

    MATH  Google Scholar 

  10. S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dynamical Systems,4 (2005), 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Fazekas, M. Plum and Ch. Wieners, Enclosure for biharmonic equation. Dagstuhl Online Seminar Proceedings 05391, 2005, http://drops.dagstuhl.de/portals/05391/.

  12. A. Friedman, Partial differential equations. Holt, Rinehart and Winston, New York, 1969.

    MATH  Google Scholar 

  13. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Springer, Berlin-Heidelberg, 1983.

    MATH  Google Scholar 

  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, 1985.

    MATH  Google Scholar 

  15. Y. Hiraoka, Topological verification in infinite dimensional dynamical systems. Doctoral dissertation, Department of Informatics and Mathematical Science, Graduate School of Engineering Science, Osaka University, 2004.

  16. T. Kato, Perturbation Theory for Linear Operators. Springer, New York, 1966.

    MATH  Google Scholar 

  17. R. Klatte, U. Kulisch, C. Lawo, M. Rausch and A. Wiethoff, C-XSC-A C++ Class Library for Extended Scientific Computing. Springer, Berlin, 1993.

    MATH  Google Scholar 

  18. O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968.

    MATH  Google Scholar 

  19. J.-R. Lahmann and M. Plum, A computer-assisted instability proof for the Orr-Sommerfeld equation with Blasius profile. ZAMM,84 (2004), 188–204.

    Article  MATH  MathSciNet  Google Scholar 

  20. N.J. Lehmann, Optimale Eigenwerteinschließungen. Numer. Math.,5 (1963), 246–272.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J.,20 (1971), 1077–1092.

    Article  Google Scholar 

  22. K. Nagatou, M.T. Nakao and N. Yamamoto, An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness. Numer. Funct. Anal. Optim.,20 (1999), 543–565.

    Article  MATH  MathSciNet  Google Scholar 

  23. M.T. Nakao, Solving nonlinear elliptic problems with result verification using anH −1 type residual iteration. Computing Suppl.,9 (1993), 161–173.

    Google Scholar 

  24. M.T. Nakao and N. Yamamoto, Numerical verifications for solutions to elliptic equations using residual iterations with higher order finite elements. J. Comput. Appl. Math.60 (1995), 271–279.

    Article  MATH  MathSciNet  Google Scholar 

  25. M.T. Nakao, M. Plum and Y. Watanabe, A computer-assisted instability proof for the Orr-Sommerfeld problem with Poiseuille flow. ZAMM,89 (2009), 5–18, DOI: 10.1002/zamm.200700158.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Plum, ExplicitH 2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems. J. Math. Anal. Appl.,165 (1992), 36–61.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Plum, Enclosures for solutions of parameter-dependent nonlinear elliptic boundary value problems: Theory and implementation on a parallel computer. Interval Computations,3 (1994), 106–121.

    Google Scholar 

  28. M. Plum, Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems. J. Comput. Appl. Math.,60 (1995), 187–200.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Plum, Enclosures for two-point boundary value problems near bifurcation points. Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, 1996, 265–279.

  30. M. Plum, Guaranteed numerical bounds for eigenvalues. Spectral Theory and Computational Methods of Sturm-Liouville Problems, D. Hinton and P.W. Schaefer (eds.), Marcel Dekker, New York, 1997, 313–332.

    Google Scholar 

  31. M. Plum, Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance. DMV Jahresbericht JB,110 (2008), 19–54.

    MATH  MathSciNet  Google Scholar 

  32. M. Plum and Ch. Wieners, New solutions of the Gelfand problem, J. Math. Anal. Appl.,269 (2002), 588–606.

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Rektorys, Variational Methods in Mathematics, Science and Engineering, 2nd edition. Reidel Publ. Co., Dordrecht, 1980.

    MATH  Google Scholar 

  34. S.M. Rump, INTLAB-INTerval LABoratory, a Matlab toolbox for verified computations, version 4.2.1. Inst. Informatik, TU Hamburg-Harburg, 2002, http://www.ti3.tu-harburg.de/rump/intlab/

  35. J. Schröder, Vom Defekt ausgehende Fehlerabschätzungen bei Differentialgleichungen. Arch. Rat. Mech. Anal.,3 (1959), 219–228.

    Article  MATH  Google Scholar 

  36. J. Schröder, Operator Inequalities. Academic Press, New York, 1980.

    MATH  Google Scholar 

  37. J. Schröder, Operator inequalities and applications. Inequalities, Fifty Years on from Hardy, Littlewood and Polya, W.N. Everitt (ed.), Marcel Dekker Inc., 1991, 163–210.

  38. W. Walter, Differential and Integral Inequalities. Springer, Berlin-Heidelberg, 1970.

    MATH  Google Scholar 

  39. S. Zimmermann and U. Mertins, Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. Z. Anal. Anwendungen,14 (1995), 327–345.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Plum.

About this article

Cite this article

Plum, M. Computer-assisted proofs for semilinear elliptic boundary value problems. Japan J. Indust. Appl. Math. 26, 419–442 (2009). https://doi.org/10.1007/BF03186542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03186542

Key words

Navigation