Skip to main content
Log in

Recent development in rigorous computational methods in dynamical systems

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We highlight selected results of recent development in the area of rigorous computations which use interval arithmetic to analyse dynamical systems. We describe general ideas and selected details of different ways of approach and we provide specific sample applications to illustrate the effectiveness of these methods. The emphasis is put on a topological approach, which combined with rigorous calculations provides a broad range of new methods that yield mathematically reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Arai, On hyperbolic plateaus of the Hénon map. Experimental Math.,16 (2007), 181–188.

    MATH  MathSciNet  Google Scholar 

  2. Z. Arai, On loops in the hyperbolic locus of the complex Hénon map and their monodromies. Preprint.

  3. Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multi-parameter systems. To appear in SIAM J. Appl. Dynam. Sys.

  4. Z. Arai and K. Mischaikow, Rigorous computations of homoclinic tangencies. SIAM J. Appl. Dynam. Sys.,5 (2006), 280–292.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Ban and W. Kalies, A computational approach to Conley’s decomposition theorem. J. Comp. Nonlinear Dynam.,1 (2006), 312–319.

    Article  Google Scholar 

  6. R.C. Churchill, J. Franke and J. Selgrade, A geometric criterion for hyperbolicity of flows. Proc. Amer. Math. Soc.,62 (1977), 137–143.

    Article  MATH  MathSciNet  Google Scholar 

  7. Computer Assisted Proofs in Dynamics. http://capd.wsb-nlu.edu.pl/.

  8. Computational Homology Project. http://chomp.rutgers.edu/.

  9. C. Conley, Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in Math., No. 38, Amer. Math. Soc., Providence, RI, 1978.

  10. T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, 2nd edition. MIT Press, Cambridge, MA, 2001.

    MATH  Google Scholar 

  11. S. Day, O. Junge and K. Mischaikow, A rigorous numerical method for the global analysis of infinite dimensional discrete dynamical systems. SIAM J. Appl. Dynam. Sys.,3 (2004), 117–160.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Dumortier, S. Ibáñez and H. Kokubu, New aspects in the unfolding of the nilpotent singularity of codimension three. Dynam. Syst.,16 (2001), 63–95.

    Article  MATH  Google Scholar 

  13. F. Dumortier, S. Ibáñez and H. Kokubu, Cocoon bifurcation in three dimensional reversible vector fields. Nonlinearity,19 (2006), 305–328.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.J. Davis, R.S. MacKay and A. Sannami, Markov shifts in the Hénon family. Physica D,52 (1991), 171–178.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka and P. Pilarczyk, Quantitative hyperbolicity estimates in one-dimensional dynamics. Nonlinearity,21 (2008), 1967–1987.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems. Handbook of Dynamical Systems II, North-Holland, 2002, 221–264.

  17. R. Devaney and Z. Nitecki, Shift automorphisms in the Hénon mapping. Commun. Math. Phys.,67 (1979), 137–146.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Hiraoka, T. Ogawa and K. Mischaikow, Conley-index based numerical verification method for global bifurcations of the stationary solutions to the Swift-Hohenberg equation. Trans. JJIAM,13 (2003), 191–211, in Japanese.

    Google Scholar 

  19. S.L. Hruska, A numerical method for proving hyperbolicity of complex Hénon mappings. Found. Comp. Math.,6 (2006), 427–455.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology. Applied Mathematical Sciences, Vol. 157, Springer-Verlag, New York, 2004.

    MATH  Google Scholar 

  21. W. Kalies, K. Mischaikow and R.C.A.M. Vander Vorst, An algorithmic approach to chain recurrence. Found. Comp. Math.,5 (2005), 409–449.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Karp, A characterization of the minimum cycle mean in a digraph. Discrete Math.,23 (1978), 309–311.

    MATH  MathSciNet  Google Scholar 

  23. H. Kokubu, D. Wilczak and P. Zgliczyński, Rigorous verification of cocoon bifurcations in the Michelson system. Nonlinearity,20 (2007), 2147–2174.

    Article  MATH  MathSciNet  Google Scholar 

  24. Y.-T. Lau, The “cocoon” bifurcations in three-dimensional systems with two fixed points. Int. J. Bif. Chaos,2 (1992), 543–558.

    Article  MATH  Google Scholar 

  25. D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation. Physica D,19 (1986), 89–111.

    Article  MATH  MathSciNet  Google Scholar 

  26. C.K. McCord, Uniqueness of connecting orbits in the equationY (3)=Y 2−1. J. Math. Anal. Appl.,114 (1986), 584–592.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. McCord, K. Mischaikow and M. Mrozek, Zeta functions, periodic trajectories and the Conley index. J. Diff. Eq.,121 (1995), 258–292.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Mischaikow, Topological techniques for efficient rigorous computations in dynamics. Acta Numerica,11 (2002), 435–477.

    Article  MATH  MathSciNet  Google Scholar 

  29. K. Mischaikow, M. Mrozek and P. Pilarczyk, Graph approach to the computation of the homology of continuous maps. Found. Comp. Math.,5 (2005), 199–229.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems. Trans. Amer. Math. Soc.,318 (1990), 149–178.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Mrozek, Open index pairs, the fixed point index and rationality of zeta functions. Ergod. Th. & Dynam. Sys.,10 (1990), 555–564.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Mrozek, The Conley index on compact ANR’s is of finite type. Results in Mathematics,18 (1990), 306–313.

    MATH  MathSciNet  Google Scholar 

  33. P. Pilarczyk, Computer assisted method for proving existence of periodic orbits. Top. Methods Nonlinear Anal.,13 (1999), 365–377.

    MATH  MathSciNet  Google Scholar 

  34. P. Pilarczyk, Topological-numerical approach to the existence of periodic trajectories in ODEs. Discrete and Continuous Dynamical Systems 2003, A Supplement Volume: Dynamical Systems and Differential Equations, 701–708.

  35. P. Pilarczyk, The Conley index and rigorous numerics for hyperbolic periodic trajectories in ODEs. In preparation.

  36. P. Pilarczyk and K. Stolot, Excision-preserving cubical approach to the algorithmic computation of the discrete Conley index. Topology Appl.,155 (2008), 1149–1162.

    Article  MATH  MathSciNet  Google Scholar 

  37. R.J. Sacker and G.R. Sell, Existence of dichotomies and invariant splitting for linear differential systems I. J. Diff. Eq.,27 (1974), 429–458.

    Article  MathSciNet  Google Scholar 

  38. A. Szymczak, The Conley index for discrete semidynamical systems. Topology Appl.,66 (1995), 215–240.

    Article  MATH  MathSciNet  Google Scholar 

  39. I. Ugarcovici and H. Weiss, Chaotic dynamics of a nonlinear density dependent population model. Nonlinearity,17 (2004), 1689–1711.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. Wilczak and P. Zgliczyński, Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete Cont. Dyn. Sys. A,17 (2007), 629–652.

    MATH  Google Scholar 

  41. P. Zgliczyński,C 1-Lohner algorithm. Found. Comp. Math.,2 (2002), 429–465.

    Article  MATH  Google Scholar 

  42. D. Wilczak and P. Zgliczyński,C r-Lohner algorithm. Preprint, available at http://arxiv.org/abs/0704.0720.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Z. Arai was partially supported by Grant-in-Aid for Scientific Research (No. 17740054).

H. Kokubu was partially supported by Grant-in-Aid for Scientific Research (No. 17340045).

P. Pilarczyk was partially supported by the JSPS Postdoctoral Fellowship (No. P06039) at the Department of Mathematics, Kyoto University, and by Grant-in-Aid for Scientific Research (No. 1806039).

About this article

Cite this article

Arai, Z., Kokubu, H. & Pilarczyk, P. Recent development in rigorous computational methods in dynamical systems. Japan J. Indust. Appl. Math. 26, 393–417 (2009). https://doi.org/10.1007/BF03186541

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03186541

Key words

Navigation