Metals and Materials International

, Volume 8, Issue 4, pp 359–365 | Cite as

Collapse characteristics of hydroformed tubes

  • Young-Suk Kim
  • Young-Moon Lee
  • Cheol Kim
  • Sang-Moo Hwang


Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.


tube hydroforming hydroformed tube maximum collapse load collapse absorption capability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Fuchizawa and H. Takeyama,J. Jpn. Soc. Precision Eng. 45, 106 (1979).Google Scholar
  2. 2.
    M. Koc and T. Altan,J. Mat. Proc. Tech. 108, 384 (2001).CrossRefGoogle Scholar
  3. 3.
    F. Dohmann and C. Hartl,lJ. Mat. Proc. Tech. 71, 174 (1997).CrossRefGoogle Scholar
  4. 4.
    Y. S. Kim, H. S. Cho, C. D. Park and W. J. Choi,J. Kor. Soc. Tech. Plasticity 9, 604 (2000).Google Scholar
  5. 5.
    S. T. Kim, S. W. Im, T. G. Lee, and Y. S. Kim,J. Kor. Soc. Tech. Plasticity 9, 35 (2000).Google Scholar
  6. 6.
    N. Asnafi and A. Skogsgardh,Mater. Sci. Eng. A 279, 95 (2000).CrossRefGoogle Scholar
  7. 7.
    R. H. Wagoner and J. V. Laukonis,Metall. Trans. A 14, 1487 (1983).CrossRefGoogle Scholar
  8. 8.
    J. V. hLaukonis and R. H. Wagoner,Metall. Trans. A 16, 421 (1985).CrossRefGoogle Scholar
  9. 9.
    A. B. Doucet and R. H. Wagoner,Metall. Trans. A 20, 1483 (1989).CrossRefGoogle Scholar
  10. 10.
    S. R. Reid,Int. J. Mech. Sci. 35, 1035 (1993).CrossRefGoogle Scholar
  11. 11.
    T. Wierzbicki and W. Abramowicz,J. Appl. Mech. 50, 727 (1983).MATHCrossRefGoogle Scholar
  12. 12.
    F. Bleich,Buckling Strength of Metal Structures, McGraw-Hill Book Co., New York (1952).Google Scholar
  13. 13.
    J. M. Alexander,Quart. J. Mech. Appl. Math. 13, 10 (1960).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    W. Abramowiez and N. Jones,Int. J. Impact Eng. 4, 243 (1986).CrossRefGoogle Scholar
  15. 15.
    C. H. Jeong,Master Thesis, Yonsei University, Seoul, Korea (1998)Google Scholar
  16. 16.
    C. W. Kim, B. K. Han and C. J. Won,J. Kor. Soc. Auto. Eng. 6, 119 (1998).Google Scholar
  17. 17.
    S. R. Guillow, G. Lu, and R. H. Grzebieta,Int. J. Mech. Sci. 43, 2103 (2001).MATHCrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Young-Suk Kim
    • 1
  • Young-Moon Lee
    • 1
  • Cheol Kim
    • 1
  • Sang-Moo Hwang
    • 2
  1. 1.Department of Mechanical EngineeringKyungpook National UniversityDaeguKorea
  2. 2.Department of Mechanical EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations