Advertisement

Metals and Materials International

, Volume 8, Issue 4, pp 341–346 | Cite as

Effect of manganese addition on hydrogen storage performance of vanadium-based BCC hydrogen storage alloys

  • Chan-Yeol Seo
  • Zhao-Liang Zhang
  • Jin-Ho Kim
  • Paul S. Lee
  • Jai-Young Lee
Article

Abstract

The effect of manganese addition on hydrogen storage performance of vanadium-based BCC alloys was investigated by measuring mainly pressure-composition (P−C) isotherms at 303K. Annealing heat-treatment was also considered in selected cases. The XRD patterns showed BCC single phase in all the alloys. With increasing Mn content, the lattice parameters decreased linearly, thus resulting in an increase in plateau pressure and a reverse effect on maximum hydrogen storage capacity. However, an effective hydrogen storage capacity as high as 1.92 wt.% was achieved at x=0.075. V−Ti−Mn alloys showed a surprisingly flat desorption plateau, but lots of absorbed hydrogen cannot desorb at ambient temperature. Although V0.44Ti0.20Cr0.12Mn0.12Fe0.12 alloy did not show the first plateau, both the maximum and effective hydrogen storage capacities were very low.

Keywords

manganese vanadium-based BCC alloys pressure-composition (P−C) isotherms plateau pressure maximum and effective hydrogen storage capacities annealing heat-treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Akiba and H. Iba,Intermetallics 6, 461 (1998).CrossRefGoogle Scholar
  2. 2.
    H. Iba and E. Akiba,J. Alloys & Compounds 253–254, 21 (1997).CrossRefGoogle Scholar
  3. 3.
    Y. Tominaga, S. Nishimura, T. Amemiya, T. Fuda, T. Tamura, T. Kuriiwa, A. Kamegawa, and M. Okada,Mater. Trans. JIM 40, 871 (1999).Google Scholar
  4. 4.
    S. W. Cho, C. S. Han, C. N. Park, and E. Akiba,J. Alloys & Compounds 289, 244 (1999).CrossRefGoogle Scholar
  5. 5.
    S. W. Cho, H. Enoki, and E. Akiva,J. Alloys & Compounds 307, 304 (2000).CrossRefGoogle Scholar
  6. 6.
    T. Fuda, K. Matsumoto, Y. Tomimaga, T. Tamura, T. Kuriiwa, A. Kamegawa, and M. Okada,Mater. Trans. JIM 41, 577 (2000).Google Scholar
  7. 7.
    Y. Tominaga, K. Matsumoto, T. Fuda, T. Tamura, T. Kuriiwa, A. Kamegawa, H. Takamura, and M. Okada,Mater. Trans. JIM 41, 617 (2000).Google Scholar
  8. 8.
    Q. A. Zhang, Y. Q., Lei, X. G. Yang, Y. L. Du, and Q. D. Wang,Int. J. Hydrogen Energy 25, 657 (2000).CrossRefGoogle Scholar
  9. 9.
    C. Y. Seo, J. H. Kim, P. S. Lee, and J. Y. Lee, submitted to J. Alloys & Compounds.Google Scholar
  10. 10.
    D. N. Gruen, M. H. Mendelsohn, and A. E. Dwight,J. Less-Common Met. 56, 19 (1977).CrossRefGoogle Scholar
  11. 11.
    J. F. Lynch, G. G. Libowitz, and A. J. Maeland,J. Less-Common Met. 103, 117 (1984).CrossRefGoogle Scholar
  12. 12.
    R. Balasubramaniam, M. N. Mungole, and K. N. Rai,J. Alloys & Compounds 196, 63 (1993).CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Chan-Yeol Seo
    • 1
  • Zhao-Liang Zhang
    • 1
  • Jin-Ho Kim
    • 1
  • Paul S. Lee
    • 1
  • Jai-Young Lee
    • 1
  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations