Journal of Physiology and Biochemistry

, Volume 65, Issue 4, pp 339–344 | Cite as

Protective effects of caffeic acid phenethyl ester on iron-induced liver damage in rats

  • S. Oktar
  • Z. Yönden
  • M. Aydin
  • S. Ilhan
  • E. Alçin
  • O. H. Öztürk


Caffeic acid phenethyl ester (CAPE) is a natural product with potent anti-inflammatory, antitumor, and antioxidant activities, and attenuates inflammation and lipid peroxidation. The purpose of the present study was to investigate the effects of CAPE on iron-induced liver damage. Rats were divided into four groups and treated for 7 days with saline (control group), 10 µmol kg CAPE/day s.c. (CAPE group), 50 mg iron-dextran/kg i.p. (IRON group) and CAPE and iron at the same time (IRON+CAPE group). Seven days later, rats were killed and the livers were excised for biochemical analysis. The administration of IRON alone resulted in higher myeloperoxidase (MPO) activity and lipid peroxidation than in the control and CAPE treatment prevented the increase in MPO activity and malondialdeyde (MDA) level. No differences were observed in all four groups with regards to superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities. Our results collectively suggest that CAPE may be an available agent to protect the liver from injury via inhibition of MPO activity.


Caffeic acid phenethyl ester Iron overload Myeloperoxidase Malondialdehyde Oxidative stress Liver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramm, G.A., Ruddell, R.G. (2005): Hepatotoxicity of iron overload: mechanisms of ironinduced hepatic fibrogenesis. Semin Liver Dis, 25, 433–449.CrossRefPubMedGoogle Scholar
  2. 2.
    Bacon, B.R., Britton, R.S. (1990): The pathology of hepatic iron overload: a free radical—mediated process?Hepatology, 11, 127–137.CrossRefPubMedGoogle Scholar
  3. 3.
    Britton, R.S., O’Neill, R., Bacon, B.R. (1990): Hepatic mitochondrial malondialdehyde metabolism in rats with chronic iron overload. Hepatology, 11, 93–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Britton, R. (2000): “Hemochromatosis: Genetics, Pathophysiology, Diagnosis and Treatment”. Cambridge University Press, New York.Google Scholar
  5. 5.
    Niederau, C., Fischer, R., Purschel, A., Stremmel, W., Haussinger, D., and Strohmeyer, G. (1996): Long-term survival in patients with hereditary hemochromatosis. Gastroenterology, 110, 1107–1119.CrossRefPubMedGoogle Scholar
  6. 6.
    Olynyk, J.K., St Pierre, T.G., Britton, R.S., Brunt, E.M., Bacon, B.R. (2005): Duration of hepatic iron exposure increases the risk of significant fibrosis in hereditary hemochromatosis: a new role for magnetic resonance imaging. Am J Gastroenterol, 100, 837–841.CrossRefPubMedGoogle Scholar
  7. 7.
    Tseng, T.H., Lee, Y.J. (2006): Evaluation of natural and synthetic compounds from East Asiatic folk medicinal plants on the mediation of cancer. Anticancer Agents Med Chem, 6, 347–365.CrossRefPubMedGoogle Scholar
  8. 8.
    Okutan, H., Ozcelik, N., Yilmaz, H.R., and Uz, E. (2005): Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem, 38, 191–196.CrossRefPubMedGoogle Scholar
  9. 9.
    Sud’ina, G.F., Mirzoeva, O.K., Pushkareva, M.A., Korshunova, G.A., Sumbatyan, N.V., Varfolomeev, S.D. (1993): Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett, 329, 21–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Ilhan, A., Koltuksuz, U., Ozen, S., Uz, E., Ciralik, H., and Akyol, O. (1999): The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. Eur J Cardiothorac Surg, 16, 458–463.CrossRefPubMedGoogle Scholar
  11. 11.
    Fadillioglu, E., Oztas, E., Erdogan, H., Yagmurca, M., Sogut, S., Ucar, M., Irmak, M.K. (2004): Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol, 24, 47–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Rezzani, R., Giugno, L., Buffoli, B., Bonomini, F., and Bianchi, R. (2005): The protective effect of caffeic acid phenethyl ester against cyclosporine A-induced cardiotoxicity in rats. Toxicology, 212, 155–164.CrossRefPubMedGoogle Scholar
  13. 13.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951): Protein measurement with the Folin phenol reagent. J Biol Chem, 193, 265–275.PubMedGoogle Scholar
  14. 14.
    Esterbauer, H., Cheeseman, K.H. (1990): Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol, 186, 407–421.CrossRefPubMedGoogle Scholar
  15. 15.
    Wei, H., Frenkel, K. (1991): In vivo formation of oxidized DNA bases in tumor promoter-treated mouse skin. Cancer Res, 51, 4443–4449.PubMedGoogle Scholar
  16. 16.
    Sun, Y., Oberley, L.W., and Li, Y. (1988): A simple method for clinical assay of superoxide dismutase. Clin Chem, 34, 497–500.PubMedGoogle Scholar
  17. 17.
    Aebi, H. (1974): “Methods of Enzymatic Analysis”. Academic Press, New York.Google Scholar
  18. 18.
    Paglia, D.E., Valentine, W.N. (1967): Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med, 70, 158–169.PubMedGoogle Scholar
  19. 19.
    Pardo-Andreu, G.L., Barrios, M.F., Curti, C., Hernandez, I., Merino, N., Lemus, Y., Martinez, I., Riano, A., and Delgado, R. (2008): Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on ironinduced oxidative damage to rat serum and liver. Pharmacol Res, 57, 79–86.CrossRefPubMedGoogle Scholar
  20. 20.
    Hsu, D.Z., Chen, K.T., Chien, S.P., Li, Y.H., Huang, B.M., Chuang, Y.C., Liu, M.Y. (2006): Sesame oil attenuates acute iron-induced lipid peroxidation-associated hepatic damage in mice. Shock, 26, 625–630.CrossRefPubMedGoogle Scholar
  21. 21.
    Livrea, M.A, Tesoriere, L., Pintaudi, A.M., Calabrese, A., Maggio, A., Freisleben, H.,, D’Arpa, D., D’Anna, R., and Bongiorno, A. (1996): Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood, 88, 3608–3614.PubMedGoogle Scholar
  22. 22.
    Heinecke, J.W., Li, W., Francis, G.A., Goldstein, J.A. (1993): Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest, 91, 2866–2872.CrossRefPubMedGoogle Scholar
  23. 23.
    Nicholls, S.J., Hazen, S.L. (2005): Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol, 25, 1102–1111.CrossRefPubMedGoogle Scholar
  24. 24.
    Saavedra-Lopes, M., Ramalho, F.S., Ramalho, L.N., Andrade-Silva, A., Martinelli, A.L., Jordao, A.A.J., Castro-e-Silva, O., and Zucoloto, S. (2008): The protective effect of CAPE on hepatic ischemia/reperfusion injury in rats. J Surg Res, 150, 271–277.CrossRefPubMedGoogle Scholar
  25. 25.
    Panda, V.S., Naik, S.R. (2008): Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp Toxicol Pathol, 60, 397–404.CrossRefPubMedGoogle Scholar
  26. 26.
    Senthil, S., Sridevi, M., Pugalendi, K.V. (2007): Cardioprotective effect of oleanolic acid on isoproterenol- induced myocardial ischemia in rats. Toxicol Pathol, 35, 418–423.CrossRefPubMedGoogle Scholar
  27. 27.
    Belboul, A., Lofgren, C., Storm, C., and Jungbeck, M. (2000): Heparin-coated circuits reduce occult myocardial damage during CPB: a randomized, single blind clinical trial. Eur J Cardiothorac Surg, 17, 580–586.CrossRefPubMedGoogle Scholar
  28. 28.
    Tan, J., Ma, Z., Han, L., Du, R., Zhao, L., Wei, X., Hou, D., Johnstone, B.H., Farlow, M.R., and Du, Y. (2005): Caffeic acid phenethyl ester possesses potent cardioprotective effects in a rabbit model of acute myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 289, H2265–2271.CrossRefPubMedGoogle Scholar
  29. 29.
    Legssyer, R., Geisser, P., McArdle, H., Crichton, R.R., Ward, R.J. (2003): Comparison of injectable iron complexes in their ability to iron load tissues and to induce oxidative stress. Biometals, 16, 425–433.CrossRefPubMedGoogle Scholar
  30. 30.
    Premkumar, K., Bowlus, C.L. (2004): Ascorbic acid does not increase the oxidative stress induced by dietary iron in C3H mice. J Nutr, 134, 435–438.PubMedGoogle Scholar

Copyright information

© Universidad de Navarra 2009

Authors and Affiliations

  • S. Oktar
    • 1
  • Z. Yönden
    • 2
  • M. Aydin
    • 3
  • S. Ilhan
    • 4
  • E. Alçin
    • 5
  • O. H. Öztürk
    • 2
  1. 1.Dept. of PharmacologyMustafa Kemal University, Faculty of MedicineHatay
  2. 2.Dept. of BiochemistryMustafa Kemal University, Faculty of MedicineHatay
  3. 3.Dept. of PhysiologyMustafa Kemal University, Faculty of MedicineHatay
  4. 4.Dept. of PharmacologyFirat University, Faculty of MedicineElaziğTurkey
  5. 5.Dept. of PhysiologyFirat University, Faculty of MedicineElaziğTurkey

Personalised recommendations