Advertisement

Wetlands

, Volume 29, Issue 4, pp 1214–1223 | Cite as

Influence of flooding and vegetation patterns on aquatic beetle diversity in a constructed wetland complex

  • Ákos Molnár
  • Zoltán Csabai
  • Béla Tóthmérész
Article

Abstract

We tested wetland-restoration management techniques to restore and increase the diversity of aquatic beetle assemblages. Three wetland treatments were examined that included: (i) unplanted surface flow (unplanted SF) wetland, (ii) surface flow (planted SF) wetlands planted with aquatic plants, and (iii) subsurface flow (SSF) wetlands. Species richness of aquatic beetles in SF wetlands was highest in spring, while the abundance was lower in the planted SF wetlands than in the unplanted SF wetland. Planted SF wetlands had a slightly higher diversity of beetles than that of the unplanted SF wetland. The planted and unplanted SF wetlands had similar attributes throughout the rest of the year. In SSF wetlands, beetles were significantly more abundant and species rich in spring than either in the planted or in the unplanted SF wetlands. Beetle diversity in SSF wetlands was higher than that in SF wetlands. During the summer, the differences between treatments disappeared. Our results suggested that: (i) vegetation planting was a successful wetland restoration technique, due to the increased habitat diversity, (ii) subsurface flooding provided fishless temporary waters with favorable breeding conditions for aquatic beetles, thus it was also a useful restoration technique, and (iii) significant seasonal differences in abundance and species richness reflected the characteristic breeding habits of aquatic beetles.

Key Words

Coleoptera multidimensional scaling temporal dynamics wetland restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Batzer, D. P. and S. A. Wissinger. 1996. Ecology of insect communities in nontidal wetlands. Annual Review of Entomology 41:75–100.CrossRefPubMedGoogle Scholar
  2. Bosi, G. 2001. Abundance, diversity and seasonal succession of dytiscid and noterid beetles (Coleoptera: Adephaga) in two marshes of the Eastern Po Plain (Italy). Hydrobiologia 459: 1–7.CrossRefGoogle Scholar
  3. Brady, V. J., B. J. Cardinale, J. P. Gathman, and T. M. Burton. 2002. Does facilitation of faunal recruitment benefit ecosystem restoration? An experimental study of invertebrate assemblages in wetland mesocosms. Restoration Ecology 10:617–26.CrossRefGoogle Scholar
  4. Brown, S. C., K. Smith, and D. Batzer. 1997. Macroinvertebrate responses to wetland restoration in northern New York. Environmental Entomology 26:1016–24.Google Scholar
  5. Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield, and P. J. Williams. 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74:125–33.CrossRefGoogle Scholar
  6. Csabai, Z. 2000. Vízibogarak kishatározója I. (Coleoptera: Haliplidae, Hygrobiidae, Dytiscidae, Noteridae, Gyrinidae). (Identification manual of aquatic beetles of Hungary I. (Coleoptera: Haliplidae, Hygrobiidae, Dytiscidae, Noteridae, Gyrinidae). Környezetgazdálkodási Intézet, Budapest, Hungary. (In Hungarian).Google Scholar
  7. Csabai, Z. 2003. Vízibogarak kishatározója III. (Identification manual of aquatic beetles of Hungary III. Supplement Band). Környezetgazdálkodási Intézet, Budapest. (In Hungarian)Google Scholar
  8. Csabai, Z., Z. Gidó, and G. Szél. 2002. Vízibogarak kishatározója II. (Coleoptera: Georissidae, Spercheidae, Hydrochidae, Helophoridae, Hydrophilidae). (Identification manual of aquatic beetles of Hungary II. (Coleoptera: Georissidae, Spercheidae, Hydrochidae, Helophoridae, Hydrophilidae). Környezetgazdá lkodási Intézet, Budapest, Hungary. (In Hungarian)Google Scholar
  9. Cuppen, I. 1986. The influence of acidity and chlorinity on the distribution ofHydroporus species (Coleoptera, Dytiscidae) in the Netherlands. Entomologica Basiliensia 11:327–36.Google Scholar
  10. Davy-Bowker, J. 2002. A mark and recapture study of water beetles (Coleoptera: Dytiscidae) in a group of semi-permanent and temporary ponds. Aquatic Ecology 36:435–46.CrossRefGoogle Scholar
  11. De Szalay, F. and V. Resh. 2000. Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover. Freshwater Biology 45:295–308.CrossRefGoogle Scholar
  12. Fairchild, G. W., A. M. Faulds, and J. F. Matta. 2000. Beetle assemblages in ponds: effects of habitat and site age. Freshwater Biology 44:523–34.CrossRefGoogle Scholar
  13. Fairchild, G. W., J. Cruz, A. M. Faulds, A. E. Z. Short, and J. F. Matta. 2003. Microhabitat and landscape influences on aquatic beetle assemblages in a cluster of temporary and permanent ponds. Journal of the North American Benthological Society 22:224–40.CrossRefGoogle Scholar
  14. Fernando, C. and D. Galbraith. 1973. Seasonality and dynamics of aquatic insects colonizing small habitats. Verhandlungen der Internationalen Vereinigung fü r Limnologie 18:1564–1575.Google Scholar
  15. Flinn, M. B. 2005. Macroinvertebrate and zooplankton responses to emergent plant production in upper Mississippi River floodplain wetlands. Archiv fü r Hydrobiologie 162:187–10.CrossRefGoogle Scholar
  16. Foster, G. 1987. The use of Coleoptera records in assessing the conservation status of wetlands. p. 8–18.In M. Luff (ed.) The Use of Invertebrate Community Data in Environmental Assessment. University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
  17. Galewski, K. 1971. A study on morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne 41:487–702.Google Scholar
  18. Gregg, W. W. and F. L. Rose. 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Hydrobiologia 128:45–56.CrossRefGoogle Scholar
  19. Hebauer, F. 1986. Kä fer als Bioindikatoren dargestellt am Ökosystem Bergbach. Laufener Seminarbeitrage: Ausgewä hlte Referate zum Arteschutz 7:55–65.Google Scholar
  20. Heino, J. 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418:229–42.CrossRefGoogle Scholar
  21. Hornung, J. P. and A. L. Foote. 2006. Aquatic invertebrate responses to fish presence and vegetation complexity in western boreal wetlands, with implications for waterbird productivity. Wetlands 26:1–12.CrossRefGoogle Scholar
  22. ITRC (The Interstate Technology and Regulatory Council Wetlands Team). 2003. Technical and Regulatory Guidance Document for Constructed Treatment Wetlands. [WWW document]. URL http://www.itrcweb.org.Google Scholar
  23. Keiper, J. B. and W. E. Walton. 2002. Effects of three vegetation management strategies on shore-flies (Diptera: Ephydridae) in newly constructed treatment wetlands. Annals of the Entomological Society of America. 95:570–76.CrossRefGoogle Scholar
  24. Kiss, A. 2007. Factors affecting spatial and temporal distribution of Ostracoda assemblages in different macrophyte habitats of a shallow lake (Lake Feher, Hungary). Hydrobiologia 585:89–98.CrossRefGoogle Scholar
  25. Kostecke, R. M., L. M. Smith, and H. M. Hands. 2005. Macroinvertebrate response to cattail management at Cheyenne Bottoms, Kansas, USA. Wetlands 25:758–63.CrossRefGoogle Scholar
  26. Kurashov, E. A., I. V. Telesh, V. E. Panov, N. V. Usenko, and M. A. Rychkova. 1996. Invertebrate communities associated with macrophytes in Lake Ladoga. Effects of environmental factors. Hydrobiologia 322:49–55.CrossRefGoogle Scholar
  27. Lá jer, K. 1998. Bevezetés a magyarországi lápok vegetáció ökológiájába. (Vegetation ecology of the Hungarian fens). Tilia 6:84–238. (In Hungarian).Google Scholar
  28. Legendre, P. and L. Legendre. 1998. Numerical Ecology. Elsevier Science, BV, Amsterdam, The Netherlands.Google Scholar
  29. Lundkvist, E., J. Landin, and P. Milberg. 2001. Diving beetle (Dytiscidae) assemblages along environmental gradients in an agricultural landscape in Southeastern Sweden. Wetlands 21:48–58.CrossRefGoogle Scholar
  30. Margóczi, K., G. Takács, A. Pellinger, and L. Kárpáti. 2002. Wetland reconstruction in Hanság area (Hungary). Restoration Newsletter 15:14–15.Google Scholar
  31. Merkl, O. 2002. The species of 54 beetle families (Coleoptera) from the Fertő-Hanság National Park and adjacent areas, Western Hungary. p. 429–472.In S. Mahunka (ed.) The Fauna of the Fertő-Hanság National Park. The Hungarian Natural History Museum, Budapest, Hungary.Google Scholar
  32. Nicolet, P., J. Biggs, G. Fox, M. J. Hodson, C. Reynolds, M. Whitfield, and P. Williams. 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120:261–78.CrossRefGoogle Scholar
  33. Oertli, B. D., A. Joye, E. Castella, R. Juge, A. Lehmann, and J. Lachavanne. 2005. PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 15:665–79.CrossRefGoogle Scholar
  34. Painter, D. 1999. Macroinvertebrate distribution and the conservation value of aquatic Coleoptera, Mollusca and Odonata in the ditches of traditionally managed and grazing fen at Wicken Fen, UK. Journal of Applied Ecology 36:33–48.CrossRefGoogle Scholar
  35. Quinn, G. P., T. J. Hillman, and R. Cook. 2000. The response of macroinvertebrates to inundation in floodplain wetlands: a possible effect of river regulation. Regulated Rivers: Research and Management 16:469–78.CrossRefGoogle Scholar
  36. Ramsar Convention Secretariat. 2004. The Ramsar Convention Manual: a Guide to the Convention on Wetlands (Ramsar, Iran, 1971), 3rd ed. Ramsar Convention Secretariat, Gland, Switzerland.Google Scholar
  37. R Development Core Team. 2005. R: A language and environment for statistical computing. R Foundation for Statistical-Computing, Vienna, Austria. [WWW document]. URL http:// www.R-project.org.Google Scholar
  38. Ribera, I. and G. Foster. 1992. Uso de coleopteros acuaticos como indicatores biologicos (Coleoptera). (Use of aquatic Coleoptera as biological indicators). Elytron 6:61–75. (In Spanish).Google Scholar
  39. Sánchez-Fernández, D., P. Abellán, A. Mellado, J. Velasco, and A. Millán. 2006. Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain). Biodiversity and Conservation 15:4507–20.CrossRefGoogle Scholar
  40. Schaeflein, H. 1989. Dritter Beitrag zur Dytiscidenfauna Mitteleuropas (Coleoptera) mit ökologischen und nomenklaturischen Anmerkungen. Stuttgarter Beiträge zur Naturkunde (Ser. A) 430:1–39.Google Scholar
  41. Statistica. 1995. Statistica for Windows 5.0. (1995). Computer Program Manual. StatSoft, Inc., Tulsa, OK, USA.Google Scholar
  42. Strayer, D. L. and H. Malcolm. 2007. Submersed vegetation as habitat for invertebrates in the Hudson River estuary. Estuaries and Coasts 30:253–64.Google Scholar
  43. Streever, W. J., D. L. Evans, C. M. Keenan, and T. L. Crisman. 1995. Chironomidae (Diptera) and vegetation in a created wetland and implications for sampling. Wetlands 13:229–36.CrossRefGoogle Scholar
  44. Stewart, T. W. and J. A. Downing. 2008. Macroinvertebrate communities and environmental conditions in recently constructed wetlands. Wetlands 28:141–50.CrossRefGoogle Scholar
  45. Taká cs, G., K. Margóczi, and Z. Bátori. 2007. Vegetációvá ltozá sok egy nagy kiterjedésű hansá gi vizes élőhely-rekonstrukción. (Vegetation changes in a largeness wetland reconstruction in Hansá g). Természetvédelmi Közlemények 13:269–80. (In Hungarian).Google Scholar
  46. Tarr, T., M. Baber, and K. Babitt. 2005. Macroinvertebrate community structure across a wetland hydroperiod gradient in southern New Hampshire, USA. Wetlands Ecology and Management 13:321–34.CrossRefGoogle Scholar
  47. Timmermann, T., K. Margóczi, G. Takács, and K. Vegelin. 2006. Restoration of peat-forming vegetation by rewetting speciespoor fen grasslands. Applied Vegetation Science 9:241–250.CrossRefGoogle Scholar
  48. Tóthmérész, B. 1998. On the characterization of scale-dependent diversity. Abstracta Botanica 22:149–56.Google Scholar
  49. VanDuinen, G. A., A. J. Dees, and H. Esselink. 2004. Importance of permanent and temporary water bodies for aquatic beetles in the raised bog remnant Wierdense Veld. Proceedings Experimental and Applied Entomology (NEV) 15:15–20.Google Scholar
  50. Verberk, W. C. E. P., G. A. van Duinen, A. M. T. Brock, R. S. E. W. Leuven, H. Siepel, P. F. M. Verdonschot, G. van der Velde, and H. Esselink. 2006. Importance of landscape heterogeneity for the conservation of aquatic macroinvertebrate diversity in bog landscapes. Journal of Nature Conservation 14:78–90.CrossRefGoogle Scholar
  51. Wellborn, G. A., D. K. Skelly, and E. E. Werner. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27:337–63.CrossRefGoogle Scholar
  52. Wood, P. J., M. T. Greenwood, and M. D. Agnew. 2003. Pond biodiversity and habitat loss in the UK. Area 35:206–16.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  • Ákos Molnár
    • 1
  • Zoltán Csabai
    • 2
  • Béla Tóthmérész
    • 3
  1. 1.Department of Systematic Zoology and EcologyLoránd Eötvös UniversityBudapestHungary
  2. 2.Department of General and Applied EcologyUniversity of PécsPécsHungary
  3. 3.Department of EcologyUniversity of DebrecenDebrecenHungary

Personalised recommendations