Il Nuovo Cimento A (1971-1996)

, Volume 112, Issue 11, pp 1391–1399 | Cite as

Early stage of reverse annealing and projections for LHC experiments



Reverse annealingof radiation damage in silicon bulk has been studied with emphasis on its implications on LHC experiments. Predictions were shown to depend critically on the model used for reverse annealingdynamics. A set of 8p+-n-n+ pad detectors was irradiated with neutrons to fluences from 2 × 1013 to 2 × 1014 n/cm-2. Time-development of defects at 20 °C for 100 days covered the expected annealingat LHC. A linear parameterization of this initial stage of reverse annealingwith a slope parameter was used. The fluence dependence of the slope clearly proved that reverse annealingis indeed a first-order process. A large spread was observed in the slope even with identically treated detectors from the same production batch, the mean value correspondingto a reverse annealingtime constant of 476 days. Two pad detectors were irradiated to 4 × 1013 n/cm-2 and reverse annealingmeasured for a month at 60°C. A fit with two exponentials was shown to adequately describe reverse annealingup to completion.

PACS 29.40.Wk

Solid-state detectors 

PACS 61.80

Physical radiation effects radiation damage 

PACS 01.30.Cc

Conference proceedings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ROSE Collaboration (CERN RD-48), Collaboration meeting, CERN/LEB 99–3, 1999.Google Scholar
  2. [2]
    Moll M. et al., Nucl. Instrum. Methods A,426 (1999) 87.ADSCrossRefGoogle Scholar
  3. [3]
    Cindro V. et al., Nucl. Instrum. Methods A,419 (1998) 132.ADSCrossRefGoogle Scholar
  4. [4]
    Lindström G., Moll M. andFretwurst E.,Nucl. Instrum. Methods A,426 (1999) 1.ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS Collaboration, Inner detector Technical Design report, ATLAS TDR 4, 5, CERN/LHCC/97–3, 17, 1997.Google Scholar
  6. [6]
    Ziock H. et al., Nucl. Instrum. Methods A,342 (1994) 96.ADSCrossRefGoogle Scholar
  7. [7]
    Fretwurst E. et al., Nucl. Instrum. Methods A,342 (1994) 119.ADSCrossRefGoogle Scholar
  8. [8]
    Moll M., Ph.D. thesis, University of Hamburg, Hamburg (1999).Google Scholar
  9. [9]
    Matthews J. A. J. et al., Nucl. Instrum. Methods A,381 (1996) 338.ADSCrossRefGoogle Scholar
  10. [10]
    Chilingarov A. et al., Nucl. Instrum. Methods A,360 (1995) 432.ADSCrossRefGoogle Scholar
  11. [11]
    Feick H., Ph.D. thesis, University of Hamburg, Hamburg (1997).Google Scholar
  12. [12]
    Kristof E. S.,Proceedings of the Nuclear Energy Conference in Central Europe ’98, Terme Catez, Slovenia, September 7–3, 1998 (Nuclear Society of Slovenia) 1998, p. 43;Zontar D. et al.,Nucl. Instrum. Methods A,426 (1999) 51.Google Scholar
  13. [13]
    Zontar D., Ph.D. thesis, University of Ljubljana, Ljubljana (1998); Scholar
  14. [14]
    Ougouag A. M. et al., IEEE Trans. Nucl. Sci.,NS-37 (1990) 2219.ADSCrossRefGoogle Scholar
  15. [15]
    Li Z.,IEEE Trans. Nucl. Sci.,42 (1995) 224.ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1999

Authors and Affiliations

  • M. Mikuz
    • 1
    • 2
  • V. Cindro
    • 2
  • G. Kramberger
    • 2
  • D. Zontar
    • 2
  1. 1.Physics Department, Faculty of Mathematics and PhysicsUniversity of LjubljanaSlovenia
  2. 2.Experimental Particle Physics Department“Jozef Stefan” InstituteLjubljanaSlovenia

Personalised recommendations