Advertisement

Chinese Science Bulletin

, Volume 46, Issue 15, pp 1317–1320 | Cite as

Evaluation of diameter distribution of inside cavities of open CNTs by analyses of nitrogen cryo-adsorption isotherm

  • Quanhong Yang
  • Feng Li
  • Pengxiang Hou
  • Chang Liu
  • Min Liu
  • Huiming Cheng
Notes

Abstract

Precise evaluation of innerdiameter distribution of open carbon nanotubes (CNTs) is the basis of systematic investigation of physico-chemical processes occurring in nano-sized quasi-1-dimensional carbons. Due to the porosity characteristics and adsorption properties, this study evaluated the innerdiameter and its distribution of carbon nanotubes by analyses of nitrogen cryo-adsorption isotherms, and proved that the gas adsorption method is an effective method to characterize the inner cavity structure in comparison with that of electron microscopy observations and Raman measurements. The advantages of this method are as follows: Firstly, statistical information for innerdiameter distribution of open nanotubes can be obtained; Secondly, the method based on the adsorption process in inner cavities is of importance for investigation of other physico-chemical processes inside the cavities of carbon nanotubes. And finally, if combining with other characterization methods, complete structural information for cavity can be acquired and these basic parameters are important for theoretical investigations and practical applications of carbon nanotubes.

Keywords

carbon nanotubes (CNTs) innerdiameter distribution gas adsorption method adsorption isotherm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, 354: 56.CrossRefGoogle Scholar
  2. 2.
    Ugarte, D., Stockli, T., de Heer, W. A. et al., Capillarity in carbon nanotubes, in The Science and Technology of Carbon Nanotubes (eds. Tanaka, K., Yamabe, T. and Fukui, K.), Oxford, England: Elsevier Science Ltd., 1999, 128.CrossRefGoogle Scholar
  3. 3.
    Ajayan, P. M., Nanotubes from carbon, Chem. Rev., 1999, 99: 1787.CrossRefGoogle Scholar
  4. 4.
    Dujardi, E., Ebbesen, T. W., Hiura, H. et al., Capillarity and wetting of carbon nanotubes, Science, 1994, 265: 1850.CrossRefGoogle Scholar
  5. 5.
    Dillon, A. C., Jones, K. M., Bekkedahl, T. A. et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, 1997, 386: 377.CrossRefGoogle Scholar
  6. 6.
    Ye, Y., Ahn, C. C., Witham, C. et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes, Appl. Phys. Lett., 1999, 74(16): 2307.CrossRefGoogle Scholar
  7. 7.
    Liu, C., Fan, Y. Y., Cong, H. T. et al., Hydrogen storage in single-walled carbon nanotubes at room temperature, Science, 1999, 286: 1127.CrossRefGoogle Scholar
  8. 8.
    Chambers, A., Park, C., Baker, R. T. K. et al., Hydrogen storage in graphite nanofibers, J. Phys. Chem. B, 1998, 102: 4253.CrossRefGoogle Scholar
  9. 9.
    Fan, Y. Y., Liao, B., Liu, M. et al., Hydrogen uptake in vapor-grown carbon nanofibers, Carbon, 1999, 37: 1649.CrossRefGoogle Scholar
  10. 10.
    Collins, P. G., Bradley, K., Zettl, A. et al., Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 2000, 287: 1801.CrossRefGoogle Scholar
  11. 11.
    Kong, J., Franklin, N. R., Dai, H. J. et al., Nanotube molecular wires as chemical sensors, Science, 2000, 287(5453): 622.CrossRefGoogle Scholar
  12. 12.
    Thess, A., Lee, R., Nikolaev, P. et al., Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483.CrossRefGoogle Scholar
  13. 13.
    Ugarte, D., Chatelain, A., de Heer, W. A., Nanocapillarity and chemistry in carbon nanotubes, Science, 1996, 274(5294): 1897.CrossRefGoogle Scholar
  14. 14.
    Dresselhaus, M. S., Eklund, P. C., Phonons in carbon nanotubes, Advances in Physics, 2000, 49(6): 705.CrossRefGoogle Scholar
  15. 15.
    Saito, R., Takeya, T., Kimura, T. et al., Raman intensity of single-wall carbon nanotubes, Phys. Rev. B, 1998, 57: 4145.CrossRefGoogle Scholar
  16. 16.
    Eswaramoorthy, M., Sen, R., Rao, C. N. R., A study of micropores in single-walled carbon nanotubes by adsorption of gases and vapors, Chem. Phys. Lett., 1999, 304: 207.CrossRefGoogle Scholar
  17. 17.
    Inoue, S., Ichikuni, N., Kaneko, K. et al., Capillary condensation of N2 on multiwall carbon nanotubes, J. Phys. Chem. B, 1998, 102(24): 4689.CrossRefGoogle Scholar
  18. 18.
    Barrett, E. P., Joyner, L. G., Halenda, P. P., The determination of pore volume and area distributions in porous substance, Part I, Computations from nitrogen isotherm, J. Am. Chem. Soc., 1951, 73: 373.CrossRefGoogle Scholar
  19. 19.
    Gregg, S. J., Sing, K. S.W., Adsorption, Surface Area and Porosity, 2nd ed., London: Academic Press, 1982, 218.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Quanhong Yang
    • 1
  • Feng Li
    • 1
  • Pengxiang Hou
    • 1
  • Chang Liu
    • 1
  • Min Liu
    • 1
  • Huiming Cheng
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations