Skip to main content
Log in

Blue emission from hydrogen-containing a-Si:H/SiO2 multilayers and the investigation of its mechanism

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

A series of hydrogen-containing a-Si:H/SiO2 multilayers with different a-Si:H sublayer thickness were fabricated by layer-by-layer deposition andin situ plasma oxidation in a plasma-enhanced chemical vapor deposition system (PECVD). Optical induced blue emission from the samples was observed by the naked eye at room temperature, which has never been reported in the luminescence study of Si/SiO2 multilayers up to now. Both the photoluminescence (PL) peak and the absorption edge show a blue shift as the a-Si:H sublayer thickness decreases. The origin of the blue emission and the effect of hydrogen are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavesi, L., Negro, L., Mazzolenio, C. et al., Optical gain in silicon nanocrystals, Nature, 2000, 408: 440–444.

    Article  Google Scholar 

  2. Skorupa, W., Yamkov, R. A., Rebohle, L. et al., A study of the blue photoluminescene emission from thermally-grown, Si+-implanted SiO2 films after short-time annealing, Nuclear Instrument and Methods in Physics Research B, 1996, 120: 106–109.

    Article  Google Scholar 

  3. Liao, L. S., Bao, X. M., Li, N. S. et al., Blue, green, and red-right emission from Si+-implanted thermal SiO2 films on crystalline silicon, J. Luminescence, 1996, 68: 199–204.

    Article  Google Scholar 

  4. Hanaizumi, O., Ono, K., Ogawa, Y., Blue-light emission from sputtered Si:SiO2 films without annealing, Appl. Phys. Lett., 2003, 82: 538–540.

    Article  Google Scholar 

  5. Benyoucef, M., Kuball, M., Sun, J. M. et al., Raman scattering and photoluminescence studies on Si/SiO2 superlattices, J. Appl. Phys., 2001, 89: 7903–7908.

    Article  Google Scholar 

  6. Photopoulos, P., Nassiopoulou, A. G., Kouvatsos, D. N. et al., Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices, Appl. Phys. Lett., 2000, 76: 3588–3590.

    Article  Google Scholar 

  7. Lockwood, D. J., Lu, A. H., Baribean, J. M., Quantum confined luminescence in Si/SiO2 superlattices, Phys. Rev. Letter, 1996, 76: 539–541.

    Article  Google Scholar 

  8. Lucovsky, G., Yang, J., Chao, S. S. et al., Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films, Phys. Rev. B, 1983, 28: 3225–3233.

    Article  Google Scholar 

  9. Singh, J., Effect mass of charge carriers in amorphous semiconductors and its applications, J. Non-Cryst. Solids, 2002, 299–302: 444–448.

    Article  Google Scholar 

  10. Zhou, Z. Y., Brus, L., Friesner, R., Electronic structure and luminescence of 1.1- and 1.4- nm silicon nanocystall: Oxide shell versus hydrogen passivation, Nano. Lett., 2002, 3: 163–167.

    Article  Google Scholar 

  11. Niquet, Y.M., Delerue, C., Allan, G. et al., Method for tight-binding parametrization: Application to silicon nanostructures, Phy. Rev. B, 2000, 62: 5109–5115.

    Article  Google Scholar 

  12. Wolkin, M. V., Jorme, J., Fauchet, P. M., Electronics states and luminescence in porous silicon quantum dots: The role of oxygen, Phys. Rev. Lett., 1999, 82: 197–200.

    Article  Google Scholar 

  13. Henry, C. H., Nassu, K., Life times of bound excitons in CdS, Phy. Rev. B, 1970, 1: 1628–1634.

    Article  Google Scholar 

  14. Proot, J. P., Delelure, C., Allan, G., Electronic structure and optical properties of silicon crystallites: Application to porous silicon, Appl. Phys. Lett., 1992, 19: 1948–1950.

    Article  Google Scholar 

  15. Dlerue, C., Allan, G., Lannoo, M., Theoretical aspects of the luminescence of porous silicon, Phys. Rev. B, 1993, 48: 11024–11036.

    Article  Google Scholar 

  16. Ohno, T., Shiraishi, K., Ogawa, T., Intrinsic origin of visible light emission from silicon quantum wires: Electronic structure and geometrically restricted exciton, Phys. Rev. B, 1992, 69: 2400–2403.

    Article  Google Scholar 

  17. Sanders, G.D., Chang, Y.C., Theory of optical properties of quantum wires in porous silicon, Phys. Rev. B, 1992, 45: 9202–9213.

    Article  Google Scholar 

  18. Beaudoin, M., Meunier, M., Arsenault, C. J., Blueshift of the optical band gap: Implication for the quantum confinement effect in a-Si:H/a-Si:N x multilayers, Phys. Rev. B, 1993, 47: 2197–2201.

    Article  Google Scholar 

  19. Tohom, R., Shimogaichi, Y., Mizuno, M. et al., 2.7-eV luminescence in asmanufactured high-purity silica glass, Phys. Rev. Lett., 1989, 62: 1388–1391.

    Article  Google Scholar 

  20. Eoin, P., Reilly, O., Theory of defect in vitreous silicon dioxide, Phys. Rev. B, 1983, 27: 3780–3795.

    Article  Google Scholar 

  21. Skujia, L., Isoelctronic series of twofold coordinate Si, Ge and Sn atoms in glassy SiO2: a luminescence study, J. Non-Cryst Solids, 1992, 149: 77–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Zhu.

About this article

Cite this article

Zhu, D., Ma, Z., Mei, J. et al. Blue emission from hydrogen-containing a-Si:H/SiO2 multilayers and the investigation of its mechanism. Chin. Sci. Bull. 49, 1906–1910 (2004). https://doi.org/10.1007/BF03184279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184279

Keywords

Navigation