Skip to main content
Log in

Issues and prospects of belowground ecology with special reference to global climate change

  • Review
  • Published:
Chinese Science Bulletin

Abstract

The theory of ecology is based on over 100 a of research and investigation, all centered on aboveground patterns and processes. However, as contemporary ecologists are increasingly acknowledging, belowground structures, functions, and processes are some of the most poorly understood areas in ecology. This lack of understanding of belowground ecological processes seriously restricts the advance of global change research. The interdisciplinary field of belowground ecology began to flourish in the 1990s, along with the expansion of global change research, and quickly gained momentum. Belowground ecology aims to investigate belowground structures, functions, and processes, as well as their relationships with corresponding aboveground features, emphasizing the responses of belowground systems under global change conditions. Key research areas include root ecology, belowground animals, and soil microorganisms. This review summarizes and analyzes the relationships between above- and belowground ecosystems, root ecology, root biogeography, belowground biodiversity, as well as research areas with particular challenges and progress. This commentary emphasizes certain theoretical issues concerning the responses of belowground processes to global change, and concludes that belowground ecology is a critical research priority in the 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger, W. H., Carbon sequestration in soils, Science, 1999, 284: 2095

    Article  Google Scholar 

  2. Copley, J., Ecology goes underground, Nature, 2000, 406: 452–454.

    Article  Google Scholar 

  3. Caldwell, M. M., Pearcy, R. W., Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above and Below Ground, San Diego: Academic Press, 1994.

    Google Scholar 

  4. Rice, C. W., Rodd, T. C., Blair, J. M. et al., Belowground biology and processes, in Grassland Dynamics, Long-Term Ecological Research in Tallgrass Prairie (eds. Knapp, A. K., Briggs, J. M., Hartnett, D. C. et al.), Oxford: Oxford University Press, 1998, 244–264.

    Google Scholar 

  5. Bazzaz, F. A., Plant in Changing Environments: Linking Physiological, Population, and Community Ecology, Cambridge: Cambridge University Press, 1996.

    Google Scholar 

  6. Chapin, F. S. III, Ruess, R. W., The roots of the matter, Nature, 2001, 411: 749–752.

    Article  Google Scholar 

  7. Wolters, V., Silver, W. L., Bignell, D. E. et al., Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning, BioScience, 2000, 50: 1089–1098.

    Article  Google Scholar 

  8. Chapin, F. S. III, Matson, P. A., Mooney, H., Principles of Terrestrial Ecosystem Ecology, New York: Springer-Verlag, 2002.

    Google Scholar 

  9. Wardle, D. A., Communities and Ecosystems, Linking the Aboveground and Belowground Components, Princeton: Princeton University Press, 2002, 392.

    Google Scholar 

  10. van der Putten, W. H., Mortimer, S. R., Hedlund, K. et al., Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach, Oecologia, 2000, 124: 91–99.

    Article  Google Scholar 

  11. André, H., Ducarme, X., Anderson, J. et al., Skilled eyes are needed to go on studying the richness of the soil, Nature, 2001, 409: 761.

    Article  Google Scholar 

  12. Valentini, R., Matteucci, G., Dolman, A. J. et al., Respiration as the main determinant of carbon balance in European forests, Nature, 2000, 404: 861–865.

    Article  Google Scholar 

  13. Högberg, P., Nordgren, A., Buchmann, N. et al., Large-scale forest girdling shows that current photosynthesis drives soil respiration, Nature, 2001, 411: 789–792.

    Article  Google Scholar 

  14. Bardgett, R. D., Wardle, D. A., Herbivore-mediated linkages between aboveground and belowground communities, Ecology, 2003, 84: 2258–2268.

    Article  Google Scholar 

  15. Zhang, X., Zhou, G., Gao, Q. et al., Study of global change and terrestrial ecosystems in China, Earth Science Frontiers (in Chinese), 1997, 4: 137–144.

    Google Scholar 

  16. Zhou, G.S., Zhang, X., Zheng, Y., Advance in the project “Modeling responses of Chinese terrestrial ecosystems to global change”, Advances in Earth Sciences (in Chinese), 1997, 12: 270–275.

    Google Scholar 

  17. Fang, J., Global Ecology: Climate Change and Ecological Responses (in Chinese), Beijing: China Higher Education Press and Springer-Verlag, 2000.

    Google Scholar 

  18. He, J.-S., Bazzaz, F. A., Schmid, B., Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities, Oikos, 2002, 97: 337–348.

    Article  Google Scholar 

  19. Schlesinger, W. H., Biogeochemistry: An Analysis of Global Change, San Diego: Academic Press, 1997.

    Google Scholar 

  20. Hansen, R. A., Red oak litter promotes a microarthropod functional group that accelerates its decomposition, Plant Soil, 1999, 209: 37–45.

    Article  Google Scholar 

  21. Farrar, J., Hawes, M., Jones, D. et al., How roots control the flux of carbon to the rhizosphere, Ecology, 2003, 84: 827–837.

    Article  Google Scholar 

  22. Moore, J. C., McCann, K., Setälä, H. et al., Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology, 2003, 84: 846–857.

    Article  Google Scholar 

  23. van der Putten, W. H., Plant defense belowground and spatiotemporal processes in natural vegetation, Ecology, 2003, 84: 2269–2280.

    Article  Google Scholar 

  24. Read, D. J., Perez-Moreno, J., Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol., 2003, 157: 475–492.

    Article  Google Scholar 

  25. Setälä, H., Marshall, V. G., Trofymow, J. A., Influence of body size of soil fauna on litter decomposition and15N uptake by poplar in a pot trial, Soil Biol. Biochem., 1996, 28: 307–326.

    Article  Google Scholar 

  26. Laakso, J., Setälä, H., Sensitivity of primary production to changes in the architecture of belowground food webs, Oikos, 1999, 87: 57–64.

    Article  Google Scholar 

  27. Packer, A., Clay, K., Soil pathogens and spatial patterns of seedling mortality in temperate tree, Nature, 2000, 404: 278–281.

    Article  Google Scholar 

  28. De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R. et al., Soil invertebrate fauna enhances grassland succession and diversity, Nature, 2003, 422: 711–713.

    Article  Google Scholar 

  29. Klironomos, J. N., Feedback with soil biota contributes to plant rarity and invasiveness in communities, Nature, 2002, 417: 67–69.

    Article  Google Scholar 

  30. van der Heijden, M. G. A., Klironomos, J. N., Ursic, M. et al., Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature, 1998, 396: 69–72.

    Article  Google Scholar 

  31. Chauvel, A., Grimaldi, M., Barros, E. et al., Pasture damage by an Amazonian earthworm, Nature, 1999, 398: 32–33.

    Article  Google Scholar 

  32. Lavelle, P., Functional domains in soils, Ecol. Res., 2002, 17: 441–450.

    Article  Google Scholar 

  33. Morgan, J. A., Looking beneath the surface, Science, 2002, 298: 1903–1904.

    Article  Google Scholar 

  34. Pregitzer, K. S., DeForest, J. L., Burton, A. J. et al., Fine root architecture of nine north American trees, Ecol. Monogr., 2002, 72: 293–309.

    Article  Google Scholar 

  35. Vogt, K. A., Vogt, D. J., Palmiotto, P. A. et al., Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species, Plant Soil, 1996, 187: 159–219.

    Article  Google Scholar 

  36. Gill, R. A., Jackson, R. B., Global patterns of root turnover for terrestrial ecosystems, New Phytol., 2000, 147: 13–31.

    Article  Google Scholar 

  37. Lauenroth, W. K., Methods of estimating belowground net primary production, in Methods in Ecosystem Science (eds. Sala, O. E., Jackson, R. B., Mooney, H. A. et al.), New York: Springer-Verlag, 2000, 58–71.

    Google Scholar 

  38. Jiang, S., Qi, Q., Kong, D., A preliminary study on community biomass ofAneurolepidium chinense andStipa grandis grassland in Inner Mongolia, China, in Grassland Ecosystem Research (I) (ed. Inner Mongolia Grassland Ecosystem Research Station) (in Chinese), Beijing: Science Press, 1985, 12–22.

    Google Scholar 

  39. Li, Y., The relationships between belowground biomass, fine root turnover and climate in alpine meadow, Chinese Journal of Agrometeorology (in Chinese), 1998, 19: 36–42.

    Google Scholar 

  40. Sims, P. L., Singh, J. S., The structure and function often western North American grasslands, III. Net primary production, turnover, and efficiencies of energy capture and water use, J. Ecol., 1978, 66: 573–597.

    Article  Google Scholar 

  41. Vogt, K. A., Carbon budgets of temperate forests, Tree Physiology, 1991, 1991: 69–86.

    Google Scholar 

  42. Jackson, R. B., Schenk, H. J., Jobbágy, E. G. et al., Belowground consequences of vegetation change and their treatment in models, Ecol. Appl., 2000, 10: 470–483.

    Article  Google Scholar 

  43. Vogt, K. A., Vogt, D. J., Bloomfield, J., Analysis of some direct and indirect methods for estimating root biomass and production of forest at an ecosystem level, Plant Soil, 1998, 200: 71–89.

    Article  Google Scholar 

  44. Norby, R. J., Jackson, R. B., Root dynamics and global change: seeking an ecosystem perspective, New Phytol., 2000, 147: 3–12.

    Article  Google Scholar 

  45. Aber, J. D., Melillo, J. M., Nadelhoffer, K. J. et al., Fine root turn-over in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods, Oecologia, 1985, 66: 317–321.

    Article  Google Scholar 

  46. Wang, Z., Burch, W. H., Mou, P. et al., Accuracy of visible and ultraviolet light for estimating live root proportions with minirhizotrons, Ecology, 1995, 76: 2330–2334.

    Article  Google Scholar 

  47. Huang, J., Han, X., Chen, L., Advances in the research of fine root biomass in forest ecosystems, Acta Ecologica Sinica (in Chinese), 1999, 19: 270–277.

    Google Scholar 

  48. Zhang, Y., Bai, S., Wang, Z. et al., Soil P availability in larch rhizosphere, Chinese Journal of Applied Ecology (in Chinese), 2001, 12: 31–34.

    Google Scholar 

  49. Sala, O. E., Austin, A. T., Methods of estimating aboveground net primary productivity, in Methods in Ecosystem Science (eds. Sala, O. E., Jackson, R. B., Mooney, H. A. et al.), New York: Spnnger-Verlag, 2000, 31–43.

    Google Scholar 

  50. Cahill, J. F., Casper, B. B., Investigating the relationship between neighbor root biomass and belowground competition: field evidence for symmetric competition belowground, Oikos, 2000, 90: 311–320.

    Article  Google Scholar 

  51. Zhang, Y., Shen, Y., Bai, S. et al., Effects of the mixed on root growth and distribution ofFraxinus mandshurica andLarix gmelinii, Scientia Silvae Sinicae (in Chinese), 2001, 37: 16–23.

    Google Scholar 

  52. Wang, Z., Wang, J., Sun, Z. et al., Quantitative study of below- and above-ground competitions in mandchurican ash seedlings, Acta Ecologica Sinica (in Chinese), 2003, 23: 1512–1518.

    Google Scholar 

  53. Brown, J. H., Lomolino, M. V., Biogeography, Sunderland: Sinauer Associates, Inc., 1998.

    Google Scholar 

  54. Hansen, A. J., Rneilson, O. P., Dale, V. H. et al., Global Change in Forests: Responses of Species, Communities, and Biomes, BioScience, 2001, 51: 765–779.

    Article  Google Scholar 

  55. Feng, Z., Wang, X., Wu, G., Biomass and Productivity of China’s Forest Ecosystems (in Chinese), Beijing: Science Press, 1999.

    Google Scholar 

  56. Fang, J., Chen, A., Peng, C. et al., Changes in forest biomass carbon storage in China between 1949 and 1998, Science, 2001, 292: 2320–2322.

    Article  Google Scholar 

  57. Schenk, H. J., Jackson, R. B., Rooting depths, lateral root spreads, and belowground/aboveground allometries of plants in water limited ecosystems, J. Ecol., 2002, 90: 480–494.

    Article  Google Scholar 

  58. Canadell, J., Jackson, R. B., Ehleringer, J. R. et al., Maximum rooting depth of vegetation types at the global scale, Oecologia, 1996, 108: 583–595.

    Article  Google Scholar 

  59. Jackson, R. B., Canadell, J., Ehleringer, J. R. et al., A global analysis of root distributions for terrestrial biomes, Oecologia, 1996, 108: 389–411.

    Article  Google Scholar 

  60. Jackson, R. B., Mooney, H. A., Schulze, E.-D., A global budget for fine root biomass, surface area, and nutrient contents, Proceedings of the National Academy of Sciences, 1997, 94: 7362–7366.

    Article  Google Scholar 

  61. Cairns, M., Brown, S., Helmer, E. H. et al., Root biomass allocation in the world’s upland forests, Oecologia, 1997, 111: 1–11.

    Article  Google Scholar 

  62. Houghton, J. T., Ding, Y., Griggs, D. J. et al., Climate Change 2001: The Scientific Basis, Cambridge: Cambridge University Press, 2001, 892.

    Google Scholar 

  63. Schulze, E. D., Mooney, H. A., Sala, O. E. et al., Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia, Oecologia, 1996, 108: 503–511.

    Article  Google Scholar 

  64. Saugier, B., Roy, J., Mooney, H. A., Estimations of global terrestrial productivity: converging toward a single number? in Terrestrial Global Productivity (eds. Roy, J., Saugier, B., Mooney, H. A.), San Diego: Academic Press, 2001, 543–557.

    Chapter  Google Scholar 

  65. Chen, Z., Huang, D., A study on belowground productivity and fine root turnover inAneurolepidium chinense andStipa grandis grassland of Inner Mongolia, China, in Grassland Ecosystem Research (II) (ed. Inner Mongolia Grassland Ecosystem Research Station) (in Chinese), Beijing: Science Press, 1988, 132–138.

    Google Scholar 

  66. Schmid, B., Joshi, J., Schläpfer, F., Empirical evidence for biodiversity-ecosystem functioning relationships, in Functional Consequences of Biodiversity: Experimental Progress and Theoretical Extensions (eds. Kinzig, A., Tilman, D., Pacala, P.), Princeton: Princeton University Press, 2002, 120–150.

    Google Scholar 

  67. Loreau, M., Naeem, S., Inchausti, P. et al., Biodiversity and ecosystem functioning: current knowledge and future challenges, Science, 2001, 294: 804–808.

    Article  Google Scholar 

  68. Hooper, D. U., Bignell, D. E., Brown, V. K. et al., Interactions between aboveground and belowground biodiversity in terrestrial ecosystems, BioScience, 2000, 50: 1049–1061.

    Article  Google Scholar 

  69. Adams, G.A., Wall, D. H., Biodiversity above and below the surface of soils and sediments: linkages and implications for global change, BioScience, 2002, 50: 1043–1048.

    Article  Google Scholar 

  70. Sulkava, P., Huhta, V., Habitat patchiness affects decomposition and faunal diversity: a microcosm experiment on forest floor, Oecologia, 1998, 116: 390–396.

    Article  Google Scholar 

  71. He, J.-S., Fang, J., Ma, K. et al., Biodiversity and ecosystem productivity: why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica (in Chinese), 2003, 27: 835–843.

    Google Scholar 

  72. Bradford, M. A., Jones, T. H., Bardgett, R. D. et al., Impacts of soil faunal community composition on model grassland ecosystems, Science, 2002, 298: 615–618.

    Article  Google Scholar 

  73. Reynolds, H. L., Packer, A., Bever, J. D. et al., Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics, Ecology, 2003, 84: 2281–2291.

    Article  Google Scholar 

  74. Körner, C., Biosphere responses to CO2 enrichment, Ecol. Appl., 2000, 10: 1590–1619.

    Google Scholar 

  75. Allen, A. S., Andrews, J. A., Finzi, A. C. et al., Effects of free-airCO2 enrichment (FACE) on belowground processes in aPinus taeda forest, Ecol. Appl., 2000, 10: 437–448.

    Google Scholar 

  76. Schimel, D. S., House, J. I., Hibbard, K. A. et al., Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 2001, 414: 169–172.

    Article  Google Scholar 

  77. Myneni, R. B., Dong, J., Tucker, C. J. et al., A large carbon sink in the woody biomass of Northern forests, Proc. Natl. Acad. Sci. USA, 2001, 98: 14784–14789.

    Article  Google Scholar 

  78. Goodale, C. L., Apps, M. J., Birdsey, R. A. et al., Forest carbon sinks in the Northern Hemisphere, Ecol. Appl., 2002, 12: 891–899.

    Article  Google Scholar 

  79. Janssens, I. A., Freibauer, A., Ciais, P. et al., Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions, Science, 2003, 300: 1538–1542.

    Article  Google Scholar 

  80. Schlesinger, W. H., Lichter, J., Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2, Nature, 2001, 411: 466–469.

    Article  Google Scholar 

  81. Schlesinger, W. H., Andrews, J. A., Soil respiration and the global carbon cycle, Biogeochemistry, 2000, 48: 7–20.

    Article  Google Scholar 

  82. Field, C. B., Behrenfeld, M. J., Randerson, J. T. et al., Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 1998, 281: 237–240.

    Article  Google Scholar 

  83. Schwartz, D. M., Bazzaz, F. A.,In situ measurements of carbon dioxide gradients in a soil-plant-atmosphere system, Oecologia, 1973, 12: 161–167.

    Article  Google Scholar 

  84. Norby, R. J., Cotrufo, M. F., Global change: a question of litter quality, Nature, 1998, 396: 17–18.

    Article  Google Scholar 

  85. Strain, B. R., Bazzaz, F. A., Terrestrial plant communities, in CO2 and Plants: the Response of Plants to Rising Levels of Atmospheric Carbon Dioxide (ed. Lemon, E. R.), Boulder: Westview Press, Inc., 1983, 177–222.

    Google Scholar 

  86. He, J.-S., Bazzaz, F. A., Density-dependent responses of reproductive allocation to elevated atmospheric CO2 inPhytolacca americana L, New Phytol., 2003, 157: 229–239.

    Article  Google Scholar 

  87. Hungate, B. A., Holland, E. A., Jackson, R. B. et al., The fate of carbon in grasslands under carbon dioxide enrichment, Nature, 1997: 576–579.

  88. Swift, M. J., Andren, O., Brussaard, L. et al., Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies, Glob. Change Biol., 1998, 4: 729–743.

    Article  Google Scholar 

  89. Owensby, C. E., Ham, J. M., Knapp, A. K. et al., Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated CO2, Glob. Change Biol., 1999, 5: 497–506.

    Article  Google Scholar 

  90. Norby, R. J., Cotrufo, M. F., Ineson, P. et al., Elevated CO2, litter chemistry, and decomposition: a synthesis, Oecologia, 2001, 127: 153–165.

    Article  Google Scholar 

  91. Ingram, J., Freckman, D. W., Soil biota and global change, Glob. Change Biol., 1998, 4: 699–701.

    Article  Google Scholar 

  92. Rustad, L. E., Campbell, J. L., Manon, G. M. et al., A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming, Oecologia, 2001, 126: 543–562.

    Article  Google Scholar 

  93. Luo, Y., Wan, S., Hui, D. et al., Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 2001, 413: 622–625.

    Article  Google Scholar 

  94. Hirsch, A. M., Bauer, W. D., Bird, D. M. et al., Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms, Ecology, 2003, 84: 858–868.

    Article  Google Scholar 

  95. Godbold, D. L., Berntson, G.M., Bazzaz, F. A., Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2, New Phytol., 1997, 137: 433–440.

    Article  Google Scholar 

  96. Fransson, P. M. A., Taylor, A. F. S., Finlay, R. D., Elevated atmospheric CO2 alters root symbiont community structure in forest trees, New Phytol., 2001, 152: 431–442.

    Article  Google Scholar 

  97. Sen, R., The root-microbe-soil interface: new tools for sustainable plant production, New Phytol., 2003, 157: 391–398.

    Article  Google Scholar 

  98. Langley, J. A., Hungate, B. A., Mycorrhizal controls on belowground litter quality, Ecology, 2003, 84: 2302–2312.

    Article  Google Scholar 

  99. Högberg, P., Nordgren, A., Ågren, G. I., Carbon allocation between tree root growth and root respiration in boreal pine forest, Oecologia, 2002, 132: 579–581.

    Article  Google Scholar 

  100. Fitter, A. H., Graves, J. D., Wolfenden, J. et al., Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations, New Phytol., 1997, 137: 247–255.

    Article  Google Scholar 

  101. Jones, T. H., Thompson, L. J., Lawton, J. H. et al., Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems, Science, 1998, 280: 441–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng He.

About this article

Cite this article

He, J., Wang, Z. & Fang, J. Issues and prospects of belowground ecology with special reference to global climate change. Chin. Sci. Bull. 49, 1891–1899 (2004). https://doi.org/10.1007/BF03184277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184277

Keywords

Navigation