Chinese Science Bulletin

, Volume 49, Issue 18, pp 1891–1899 | Cite as

Issues and prospects of belowground ecology with special reference to global climate change



The theory of ecology is based on over 100 a of research and investigation, all centered on aboveground patterns and processes. However, as contemporary ecologists are increasingly acknowledging, belowground structures, functions, and processes are some of the most poorly understood areas in ecology. This lack of understanding of belowground ecological processes seriously restricts the advance of global change research. The interdisciplinary field of belowground ecology began to flourish in the 1990s, along with the expansion of global change research, and quickly gained momentum. Belowground ecology aims to investigate belowground structures, functions, and processes, as well as their relationships with corresponding aboveground features, emphasizing the responses of belowground systems under global change conditions. Key research areas include root ecology, belowground animals, and soil microorganisms. This review summarizes and analyzes the relationships between above- and belowground ecosystems, root ecology, root biogeography, belowground biodiversity, as well as research areas with particular challenges and progress. This commentary emphasizes certain theoretical issues concerning the responses of belowground processes to global change, and concludes that belowground ecology is a critical research priority in the 21st century.


global change root ecology root biogeography belowground biodiversity ecosystem processes belowground ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schlesinger, W. H., Carbon sequestration in soils, Science, 1999, 284: 2095CrossRefGoogle Scholar
  2. 2.
    Copley, J., Ecology goes underground, Nature, 2000, 406: 452–454.CrossRefGoogle Scholar
  3. 3.
    Caldwell, M. M., Pearcy, R. W., Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above and Below Ground, San Diego: Academic Press, 1994.Google Scholar
  4. 4.
    Rice, C. W., Rodd, T. C., Blair, J. M. et al., Belowground biology and processes, in Grassland Dynamics, Long-Term Ecological Research in Tallgrass Prairie (eds. Knapp, A. K., Briggs, J. M., Hartnett, D. C. et al.), Oxford: Oxford University Press, 1998, 244–264.Google Scholar
  5. 5.
    Bazzaz, F. A., Plant in Changing Environments: Linking Physiological, Population, and Community Ecology, Cambridge: Cambridge University Press, 1996.Google Scholar
  6. 6.
    Chapin, F. S. III, Ruess, R. W., The roots of the matter, Nature, 2001, 411: 749–752.CrossRefGoogle Scholar
  7. 7.
    Wolters, V., Silver, W. L., Bignell, D. E. et al., Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning, BioScience, 2000, 50: 1089–1098.CrossRefGoogle Scholar
  8. 8.
    Chapin, F. S. III, Matson, P. A., Mooney, H., Principles of Terrestrial Ecosystem Ecology, New York: Springer-Verlag, 2002.Google Scholar
  9. 9.
    Wardle, D. A., Communities and Ecosystems, Linking the Aboveground and Belowground Components, Princeton: Princeton University Press, 2002, 392.Google Scholar
  10. 10.
    van der Putten, W. H., Mortimer, S. R., Hedlund, K. et al., Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach, Oecologia, 2000, 124: 91–99.CrossRefGoogle Scholar
  11. 11.
    André, H., Ducarme, X., Anderson, J. et al., Skilled eyes are needed to go on studying the richness of the soil, Nature, 2001, 409: 761.CrossRefGoogle Scholar
  12. 12.
    Valentini, R., Matteucci, G., Dolman, A. J. et al., Respiration as the main determinant of carbon balance in European forests, Nature, 2000, 404: 861–865.CrossRefGoogle Scholar
  13. 13.
    Högberg, P., Nordgren, A., Buchmann, N. et al., Large-scale forest girdling shows that current photosynthesis drives soil respiration, Nature, 2001, 411: 789–792.CrossRefGoogle Scholar
  14. 14.
    Bardgett, R. D., Wardle, D. A., Herbivore-mediated linkages between aboveground and belowground communities, Ecology, 2003, 84: 2258–2268.CrossRefGoogle Scholar
  15. 15.
    Zhang, X., Zhou, G., Gao, Q. et al., Study of global change and terrestrial ecosystems in China, Earth Science Frontiers (in Chinese), 1997, 4: 137–144.Google Scholar
  16. 16.
    Zhou, G.S., Zhang, X., Zheng, Y., Advance in the project “Modeling responses of Chinese terrestrial ecosystems to global change”, Advances in Earth Sciences (in Chinese), 1997, 12: 270–275.Google Scholar
  17. 17.
    Fang, J., Global Ecology: Climate Change and Ecological Responses (in Chinese), Beijing: China Higher Education Press and Springer-Verlag, 2000.Google Scholar
  18. 18.
    He, J.-S., Bazzaz, F. A., Schmid, B., Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities, Oikos, 2002, 97: 337–348.CrossRefGoogle Scholar
  19. 19.
    Schlesinger, W. H., Biogeochemistry: An Analysis of Global Change, San Diego: Academic Press, 1997.Google Scholar
  20. 20.
    Hansen, R. A., Red oak litter promotes a microarthropod functional group that accelerates its decomposition, Plant Soil, 1999, 209: 37–45.CrossRefGoogle Scholar
  21. 21.
    Farrar, J., Hawes, M., Jones, D. et al., How roots control the flux of carbon to the rhizosphere, Ecology, 2003, 84: 827–837.CrossRefGoogle Scholar
  22. 22.
    Moore, J. C., McCann, K., Setälä, H. et al., Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology, 2003, 84: 846–857.CrossRefGoogle Scholar
  23. 23.
    van der Putten, W. H., Plant defense belowground and spatiotemporal processes in natural vegetation, Ecology, 2003, 84: 2269–2280.CrossRefGoogle Scholar
  24. 24.
    Read, D. J., Perez-Moreno, J., Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol., 2003, 157: 475–492.CrossRefGoogle Scholar
  25. 25.
    Setälä, H., Marshall, V. G., Trofymow, J. A., Influence of body size of soil fauna on litter decomposition and15N uptake by poplar in a pot trial, Soil Biol. Biochem., 1996, 28: 307–326.CrossRefGoogle Scholar
  26. 26.
    Laakso, J., Setälä, H., Sensitivity of primary production to changes in the architecture of belowground food webs, Oikos, 1999, 87: 57–64.CrossRefGoogle Scholar
  27. 27.
    Packer, A., Clay, K., Soil pathogens and spatial patterns of seedling mortality in temperate tree, Nature, 2000, 404: 278–281.CrossRefGoogle Scholar
  28. 28.
    De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R. et al., Soil invertebrate fauna enhances grassland succession and diversity, Nature, 2003, 422: 711–713.CrossRefGoogle Scholar
  29. 29.
    Klironomos, J. N., Feedback with soil biota contributes to plant rarity and invasiveness in communities, Nature, 2002, 417: 67–69.CrossRefGoogle Scholar
  30. 30.
    van der Heijden, M. G. A., Klironomos, J. N., Ursic, M. et al., Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature, 1998, 396: 69–72.CrossRefGoogle Scholar
  31. 31.
    Chauvel, A., Grimaldi, M., Barros, E. et al., Pasture damage by an Amazonian earthworm, Nature, 1999, 398: 32–33.CrossRefGoogle Scholar
  32. 32.
    Lavelle, P., Functional domains in soils, Ecol. Res., 2002, 17: 441–450.CrossRefGoogle Scholar
  33. 33.
    Morgan, J. A., Looking beneath the surface, Science, 2002, 298: 1903–1904.CrossRefGoogle Scholar
  34. 34.
    Pregitzer, K. S., DeForest, J. L., Burton, A. J. et al., Fine root architecture of nine north American trees, Ecol. Monogr., 2002, 72: 293–309.CrossRefGoogle Scholar
  35. 35.
    Vogt, K. A., Vogt, D. J., Palmiotto, P. A. et al., Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species, Plant Soil, 1996, 187: 159–219.CrossRefGoogle Scholar
  36. 36.
    Gill, R. A., Jackson, R. B., Global patterns of root turnover for terrestrial ecosystems, New Phytol., 2000, 147: 13–31.CrossRefGoogle Scholar
  37. 37.
    Lauenroth, W. K., Methods of estimating belowground net primary production, in Methods in Ecosystem Science (eds. Sala, O. E., Jackson, R. B., Mooney, H. A. et al.), New York: Springer-Verlag, 2000, 58–71.Google Scholar
  38. 38.
    Jiang, S., Qi, Q., Kong, D., A preliminary study on community biomass ofAneurolepidium chinense andStipa grandis grassland in Inner Mongolia, China, in Grassland Ecosystem Research (I) (ed. Inner Mongolia Grassland Ecosystem Research Station) (in Chinese), Beijing: Science Press, 1985, 12–22.Google Scholar
  39. 39.
    Li, Y., The relationships between belowground biomass, fine root turnover and climate in alpine meadow, Chinese Journal of Agrometeorology (in Chinese), 1998, 19: 36–42.Google Scholar
  40. 40.
    Sims, P. L., Singh, J. S., The structure and function often western North American grasslands, III. Net primary production, turnover, and efficiencies of energy capture and water use, J. Ecol., 1978, 66: 573–597.CrossRefGoogle Scholar
  41. 41.
    Vogt, K. A., Carbon budgets of temperate forests, Tree Physiology, 1991, 1991: 69–86.Google Scholar
  42. 42.
    Jackson, R. B., Schenk, H. J., Jobbágy, E. G. et al., Belowground consequences of vegetation change and their treatment in models, Ecol. Appl., 2000, 10: 470–483.CrossRefGoogle Scholar
  43. 43.
    Vogt, K. A., Vogt, D. J., Bloomfield, J., Analysis of some direct and indirect methods for estimating root biomass and production of forest at an ecosystem level, Plant Soil, 1998, 200: 71–89.CrossRefGoogle Scholar
  44. 44.
    Norby, R. J., Jackson, R. B., Root dynamics and global change: seeking an ecosystem perspective, New Phytol., 2000, 147: 3–12.CrossRefGoogle Scholar
  45. 45.
    Aber, J. D., Melillo, J. M., Nadelhoffer, K. J. et al., Fine root turn-over in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods, Oecologia, 1985, 66: 317–321.CrossRefGoogle Scholar
  46. 46.
    Wang, Z., Burch, W. H., Mou, P. et al., Accuracy of visible and ultraviolet light for estimating live root proportions with minirhizotrons, Ecology, 1995, 76: 2330–2334.CrossRefGoogle Scholar
  47. 47.
    Huang, J., Han, X., Chen, L., Advances in the research of fine root biomass in forest ecosystems, Acta Ecologica Sinica (in Chinese), 1999, 19: 270–277.Google Scholar
  48. 48.
    Zhang, Y., Bai, S., Wang, Z. et al., Soil P availability in larch rhizosphere, Chinese Journal of Applied Ecology (in Chinese), 2001, 12: 31–34.Google Scholar
  49. 49.
    Sala, O. E., Austin, A. T., Methods of estimating aboveground net primary productivity, in Methods in Ecosystem Science (eds. Sala, O. E., Jackson, R. B., Mooney, H. A. et al.), New York: Spnnger-Verlag, 2000, 31–43.Google Scholar
  50. 50.
    Cahill, J. F., Casper, B. B., Investigating the relationship between neighbor root biomass and belowground competition: field evidence for symmetric competition belowground, Oikos, 2000, 90: 311–320.CrossRefGoogle Scholar
  51. 51.
    Zhang, Y., Shen, Y., Bai, S. et al., Effects of the mixed on root growth and distribution ofFraxinus mandshurica andLarix gmelinii, Scientia Silvae Sinicae (in Chinese), 2001, 37: 16–23.Google Scholar
  52. 52.
    Wang, Z., Wang, J., Sun, Z. et al., Quantitative study of below- and above-ground competitions in mandchurican ash seedlings, Acta Ecologica Sinica (in Chinese), 2003, 23: 1512–1518.Google Scholar
  53. 53.
    Brown, J. H., Lomolino, M. V., Biogeography, Sunderland: Sinauer Associates, Inc., 1998.Google Scholar
  54. 54.
    Hansen, A. J., Rneilson, O. P., Dale, V. H. et al., Global Change in Forests: Responses of Species, Communities, and Biomes, BioScience, 2001, 51: 765–779.CrossRefGoogle Scholar
  55. 55.
    Feng, Z., Wang, X., Wu, G., Biomass and Productivity of China’s Forest Ecosystems (in Chinese), Beijing: Science Press, 1999.Google Scholar
  56. 56.
    Fang, J., Chen, A., Peng, C. et al., Changes in forest biomass carbon storage in China between 1949 and 1998, Science, 2001, 292: 2320–2322.CrossRefGoogle Scholar
  57. 57.
    Schenk, H. J., Jackson, R. B., Rooting depths, lateral root spreads, and belowground/aboveground allometries of plants in water limited ecosystems, J. Ecol., 2002, 90: 480–494.CrossRefGoogle Scholar
  58. 58.
    Canadell, J., Jackson, R. B., Ehleringer, J. R. et al., Maximum rooting depth of vegetation types at the global scale, Oecologia, 1996, 108: 583–595.CrossRefGoogle Scholar
  59. 59.
    Jackson, R. B., Canadell, J., Ehleringer, J. R. et al., A global analysis of root distributions for terrestrial biomes, Oecologia, 1996, 108: 389–411.CrossRefGoogle Scholar
  60. 60.
    Jackson, R. B., Mooney, H. A., Schulze, E.-D., A global budget for fine root biomass, surface area, and nutrient contents, Proceedings of the National Academy of Sciences, 1997, 94: 7362–7366.CrossRefGoogle Scholar
  61. 61.
    Cairns, M., Brown, S., Helmer, E. H. et al., Root biomass allocation in the world’s upland forests, Oecologia, 1997, 111: 1–11.CrossRefGoogle Scholar
  62. 62.
    Houghton, J. T., Ding, Y., Griggs, D. J. et al., Climate Change 2001: The Scientific Basis, Cambridge: Cambridge University Press, 2001, 892.Google Scholar
  63. 63.
    Schulze, E. D., Mooney, H. A., Sala, O. E. et al., Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia, Oecologia, 1996, 108: 503–511.CrossRefGoogle Scholar
  64. 64.
    Saugier, B., Roy, J., Mooney, H. A., Estimations of global terrestrial productivity: converging toward a single number? in Terrestrial Global Productivity (eds. Roy, J., Saugier, B., Mooney, H. A.), San Diego: Academic Press, 2001, 543–557.CrossRefGoogle Scholar
  65. 65.
    Chen, Z., Huang, D., A study on belowground productivity and fine root turnover inAneurolepidium chinense andStipa grandis grassland of Inner Mongolia, China, in Grassland Ecosystem Research (II) (ed. Inner Mongolia Grassland Ecosystem Research Station) (in Chinese), Beijing: Science Press, 1988, 132–138.Google Scholar
  66. 66.
    Schmid, B., Joshi, J., Schläpfer, F., Empirical evidence for biodiversity-ecosystem functioning relationships, in Functional Consequences of Biodiversity: Experimental Progress and Theoretical Extensions (eds. Kinzig, A., Tilman, D., Pacala, P.), Princeton: Princeton University Press, 2002, 120–150.Google Scholar
  67. 67.
    Loreau, M., Naeem, S., Inchausti, P. et al., Biodiversity and ecosystem functioning: current knowledge and future challenges, Science, 2001, 294: 804–808.CrossRefGoogle Scholar
  68. 68.
    Hooper, D. U., Bignell, D. E., Brown, V. K. et al., Interactions between aboveground and belowground biodiversity in terrestrial ecosystems, BioScience, 2000, 50: 1049–1061.CrossRefGoogle Scholar
  69. 69.
    Adams, G.A., Wall, D. H., Biodiversity above and below the surface of soils and sediments: linkages and implications for global change, BioScience, 2002, 50: 1043–1048.CrossRefGoogle Scholar
  70. 70.
    Sulkava, P., Huhta, V., Habitat patchiness affects decomposition and faunal diversity: a microcosm experiment on forest floor, Oecologia, 1998, 116: 390–396.CrossRefGoogle Scholar
  71. 71.
    He, J.-S., Fang, J., Ma, K. et al., Biodiversity and ecosystem productivity: why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica (in Chinese), 2003, 27: 835–843.Google Scholar
  72. 72.
    Bradford, M. A., Jones, T. H., Bardgett, R. D. et al., Impacts of soil faunal community composition on model grassland ecosystems, Science, 2002, 298: 615–618.CrossRefGoogle Scholar
  73. 73.
    Reynolds, H. L., Packer, A., Bever, J. D. et al., Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics, Ecology, 2003, 84: 2281–2291.CrossRefGoogle Scholar
  74. 74.
    Körner, C., Biosphere responses to CO2 enrichment, Ecol. Appl., 2000, 10: 1590–1619.Google Scholar
  75. 75.
    Allen, A. S., Andrews, J. A., Finzi, A. C. et al., Effects of free-airCO2 enrichment (FACE) on belowground processes in aPinus taeda forest, Ecol. Appl., 2000, 10: 437–448.Google Scholar
  76. 76.
    Schimel, D. S., House, J. I., Hibbard, K. A. et al., Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 2001, 414: 169–172.CrossRefGoogle Scholar
  77. 77.
    Myneni, R. B., Dong, J., Tucker, C. J. et al., A large carbon sink in the woody biomass of Northern forests, Proc. Natl. Acad. Sci. USA, 2001, 98: 14784–14789.CrossRefGoogle Scholar
  78. 78.
    Goodale, C. L., Apps, M. J., Birdsey, R. A. et al., Forest carbon sinks in the Northern Hemisphere, Ecol. Appl., 2002, 12: 891–899.CrossRefGoogle Scholar
  79. 79.
    Janssens, I. A., Freibauer, A., Ciais, P. et al., Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions, Science, 2003, 300: 1538–1542.CrossRefGoogle Scholar
  80. 80.
    Schlesinger, W. H., Lichter, J., Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2, Nature, 2001, 411: 466–469.CrossRefGoogle Scholar
  81. 81.
    Schlesinger, W. H., Andrews, J. A., Soil respiration and the global carbon cycle, Biogeochemistry, 2000, 48: 7–20.CrossRefGoogle Scholar
  82. 82.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. et al., Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 1998, 281: 237–240.CrossRefGoogle Scholar
  83. 83.
    Schwartz, D. M., Bazzaz, F. A.,In situ measurements of carbon dioxide gradients in a soil-plant-atmosphere system, Oecologia, 1973, 12: 161–167.CrossRefGoogle Scholar
  84. 84.
    Norby, R. J., Cotrufo, M. F., Global change: a question of litter quality, Nature, 1998, 396: 17–18.CrossRefGoogle Scholar
  85. 85.
    Strain, B. R., Bazzaz, F. A., Terrestrial plant communities, in CO2 and Plants: the Response of Plants to Rising Levels of Atmospheric Carbon Dioxide (ed. Lemon, E. R.), Boulder: Westview Press, Inc., 1983, 177–222.Google Scholar
  86. 86.
    He, J.-S., Bazzaz, F. A., Density-dependent responses of reproductive allocation to elevated atmospheric CO2 inPhytolacca americana L, New Phytol., 2003, 157: 229–239.CrossRefGoogle Scholar
  87. 87.
    Hungate, B. A., Holland, E. A., Jackson, R. B. et al., The fate of carbon in grasslands under carbon dioxide enrichment, Nature, 1997: 576–579.Google Scholar
  88. 88.
    Swift, M. J., Andren, O., Brussaard, L. et al., Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies, Glob. Change Biol., 1998, 4: 729–743.CrossRefGoogle Scholar
  89. 89.
    Owensby, C. E., Ham, J. M., Knapp, A. K. et al., Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated CO2, Glob. Change Biol., 1999, 5: 497–506.CrossRefGoogle Scholar
  90. 90.
    Norby, R. J., Cotrufo, M. F., Ineson, P. et al., Elevated CO2, litter chemistry, and decomposition: a synthesis, Oecologia, 2001, 127: 153–165.CrossRefGoogle Scholar
  91. 91.
    Ingram, J., Freckman, D. W., Soil biota and global change, Glob. Change Biol., 1998, 4: 699–701.CrossRefGoogle Scholar
  92. 92.
    Rustad, L. E., Campbell, J. L., Manon, G. M. et al., A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming, Oecologia, 2001, 126: 543–562.CrossRefGoogle Scholar
  93. 93.
    Luo, Y., Wan, S., Hui, D. et al., Acclimatization of soil respiration to warming in a tall grass prairie, Nature, 2001, 413: 622–625.CrossRefGoogle Scholar
  94. 94.
    Hirsch, A. M., Bauer, W. D., Bird, D. M. et al., Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms, Ecology, 2003, 84: 858–868.CrossRefGoogle Scholar
  95. 95.
    Godbold, D. L., Berntson, G.M., Bazzaz, F. A., Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2, New Phytol., 1997, 137: 433–440.CrossRefGoogle Scholar
  96. 96.
    Fransson, P. M. A., Taylor, A. F. S., Finlay, R. D., Elevated atmospheric CO2 alters root symbiont community structure in forest trees, New Phytol., 2001, 152: 431–442.CrossRefGoogle Scholar
  97. 97.
    Sen, R., The root-microbe-soil interface: new tools for sustainable plant production, New Phytol., 2003, 157: 391–398.CrossRefGoogle Scholar
  98. 98.
    Langley, J. A., Hungate, B. A., Mycorrhizal controls on belowground litter quality, Ecology, 2003, 84: 2302–2312.CrossRefGoogle Scholar
  99. 99.
    Högberg, P., Nordgren, A., Ågren, G. I., Carbon allocation between tree root growth and root respiration in boreal pine forest, Oecologia, 2002, 132: 579–581.CrossRefGoogle Scholar
  100. 100.
    Fitter, A. H., Graves, J. D., Wolfenden, J. et al., Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations, New Phytol., 1997, 137: 247–255.CrossRefGoogle Scholar
  101. 101.
    Jones, T. H., Thompson, L. J., Lawton, J. H. et al., Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems, Science, 1998, 280: 441–443.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Department of Ecology, College of Environmental Science, Center for Ecological Research and Education and Key Laboratory for Earth Surface Process of Ministry of EducationPeking UniversityBeijingChina
  2. 2.College of Forest Resources and Environmental ScienceNortheast Forestry UniversityHarbinChina

Personalised recommendations