Chinese Science Bulletin

, Volume 48, Issue 13, pp 1328–1330 | Cite as

Colossal magnetoresistive p-n junctions of perovskite oxide La0.9Sr0.1MnO3/SrNb0.01Ti0.99O3O3

  • Huibin Lü
  • Souyu Dai
  • Zhenghao Chen
  • Lei Yan
  • Yueliang Zhou
  • Guozhen Yang


We have successfully fabricated the colossal magnetoresistive (CMR) p-n junctions of perovskite oxide La0.9Sr0.1MnO3/SrNb0.01Ti0.99O3 (LSMO/SNTO) with laser molecular beam epitaxy. TheI-V characteristics of the LSMO/SNTO p-n junctions as a function of applied magnetic field (0–5 T) were studied between 100 and 300 K. We found that the p-n junction exhibited the CMR behavior. The CMR ratio ΔR/R 0 (ΔR =R H -R 0) is positive in magnetic fields below 0.13 T and at high temperature, while it displays a negative CMR near 100 K and in magnetic fields over 0.13 T. The CMR ratio values are 8% at 0.1 T and 13% at 5 T and 300 K, 40% at 0.1 T and 150 K, 10% at 0.13 T and -60% at 5 T and 100 K. The CMR behavior of the p-n junction is different from those of the LaMnO3 compound family.


perovskite oxide p-n junction CMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimizu, T., Gotoh, N., Shinozaki, N. et al., The properties of Schottky junctions on Nb-doped SrTiO3(001), Appl. Surf. Sci., 1997, 117/118: 400–405.CrossRefGoogle Scholar
  2. 2.
    Suzuki, S., Yamamoto, T., Suzuki, H. et al., Fabrication and characterization of Ba1-xKxBiO3/Nb-doped SrTiO3 all-oxide-type Schottky junctions, J. Appl. Phys., 1997, 81(10): 6830–6836.CrossRefGoogle Scholar
  3. 3.
    Shimizu, T., Okushi, H., Intrinsic electrical properties of Au/SrTiO3 Schottky junctions, J. Appl. Phys., 1999, 85(10): 7244–7251.CrossRefGoogle Scholar
  4. 4.
    Newns, D. M., Misewich, J. A., Tsuei, C. C. et al., Mott transition field effect transistor, Appl. Phys. Lett., 1998, 73(6): 780–782.CrossRefGoogle Scholar
  5. 5.
    Misewich, J. A., Schrott, A. G., Room-temperature oxide field-effect transistor with buried channel, Appl. Phys. Lett., 2000, 76(24): 3632–3634.CrossRefGoogle Scholar
  6. 6.
    Watanabe, Y., Tunneling current through a possible all-perovskite oxide p-n junction, Phys. Rev. B, 1998, 57(10): R5563-R5566.CrossRefGoogle Scholar
  7. 7.
    Watanabe, Y., Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modolated by bound charges at a ferroelectric surface: ferroelectric p-n diode, Phys. Rev. B, 1999, 59(17): 11257–11266.CrossRefGoogle Scholar
  8. 8.
    Kudo, A., Yanagi, H., Ueda, K. et al., Fabrication of transparent p-n heterojunction thin film diodes based entirely on oxide semi-conductors, Appl. Phys. Lett. 1999, 75(18): 2851–2853.CrossRefGoogle Scholar
  9. 9.
    Mitra, C., Raychaudhun, P., Kobernik, G. et al., p-n diode with hole- and electron-doped lanthanum manganites, Appl. Phys. Lett., 2001, 79(15): 2408–2410.CrossRefGoogle Scholar
  10. 10.
    Tanaka, H., Zhang, J., Kawai, T., Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate p-n junction, Phys. Rev. Lett., 2002, 88(2): 027204-1–027204-4.CrossRefGoogle Scholar
  11. 11.
    Tsang, C., Santim, H. McCown, D. et al., 3 Gb/in2 recoding demonstration with dua element heads & thin film disks, IEEE MAG, 1996, 32(1): 7–12.CrossRefGoogle Scholar
  12. 12.
    Smith, N., Zeltser, A. M., GMR multilayers and head design for ultrahigh density magnetic recording, IEEE MAG, 1996, 32(1): 135–141.CrossRefGoogle Scholar
  13. 13.
    Tang, D. D., Wang, P. K. Sepridsu, V. S. et al., Spin-valve RAM cell, IEEE MAG, 1995, 31(6): 3206–3208.CrossRefGoogle Scholar
  14. 14.
    Pohm, A. V., Daughton, J. M. Brown, J. et al. The architecture of a high performance mass store with GMR memory cell, IEEE MAG, 1995, 31(6): 3200–3202.CrossRefGoogle Scholar
  15. 15.
    Lu, H. B., Dai, S. Y., Chen, F. et al., Fabrication of BaTiO3 p-n junctions by laser molecular beam epitaxy, Ferroelectrics, 2002, 271: 125–130.Google Scholar
  16. 16.
    Yang, G. Z., Lu, H. B., Chen, F. et al., Laser molecular beam epitaxy and characterization of perovskite oxide thin films, J. Crystal Growth, 2001, 227–228: 929–935.CrossRefGoogle Scholar
  17. 17.
    Kusters, R. M., Singleton, J., Keen, D. A. et al., Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3, Physica B, 1989, 155: 362–365CrossRefGoogle Scholar
  18. 18.
    Helmolt, R., Wecker, J., Holzapfel, B. et al., Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnO3 ferromagnetic films, Phys. Rev. Lett., 1993, 71(14): 2331–2333.CrossRefGoogle Scholar
  19. 19.
    Jin, S., Tiefel, T. H., McCormack, M. et al., Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science, 1993, 264: 413.CrossRefGoogle Scholar
  20. 20.
    Zhao, T., Lu, H. B., Chen, F. et al., Highly conductive Nb doped SrTiO3 epitaxial thin films grown by laser molecular beam epitaxy, J. Crystal Growth, 2000, 212: 451–455.CrossRefGoogle Scholar
  21. 21.
    Urushibara, A., Moritomo, Y., Arima, T. et al., Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3, Phys. Rev. B, 1995, 51(20): 14103–14109.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Huibin Lü
    • 1
  • Souyu Dai
    • 1
  • Zhenghao Chen
    • 1
  • Lei Yan
    • 1
  • Yueliang Zhou
    • 1
  • Guozhen Yang
    • 1
  1. 1.Laboratory of Optical Physics, Institute of Physics & Center for Condensed Matter PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations