Skip to main content
Log in

Identification and function analysis of spectrin-like protein in pollen tubes of lily (Lilium davidii Duch)

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The elongation of pollen tube is an important process of sexual reproduction in higher plant. Cytoskeleton plays a major regulatory role in the elongation of pollen tubes. But whether membrane skeleton is involved in the pollen tube elongation is not clear. In this study, immunochemical detection of spectrin-like protein has been carried out in pollen tubes. By use of 2-dimensional electrophoresis(2DE) and western blotting, two spectrin-like proteins are found, one is 150 kD, and the other is 105 kD, with pI being 4.54 and 4.39, respectively. 150 kD spectrin-like protein is located in plasma membrane of pollen tube and 105 kD spectrin-like protein is located in cytoplasm, probably functioning as a subunit to form a dimmer (210 kD)in vivo. The elongation of pollen tubes is inhibited after spectrin antibody was injected into a growing pollen tube. These results suggest that spectrin-like proteins exist in pollen tube and play an important regulating role in the elongation process of pollen tubes from lily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hepler, P. K., Vidali, L., Cheung, A. Y., Polarized cell growth in higher plants, Annu. Rev. Cell Dev. Biol., 2001, 17: 159–187.[DOI]

    Article  Google Scholar 

  2. Fu, Y., Wu, G., Yang, Z. B., Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes, J. Cell Biol. 2001, 152: 1019–1032. [DOI]

    Article  Google Scholar 

  3. De Ruijter, N., Emons, A. M., Actin-binding proteins in plants, Plant Biol., 1999, 1: 26–35.

    Article  Google Scholar 

  4. Bennett, V., Gilligan, D. M., The spectrin-based membrane skeleton and micronscale organization of the plasma membrane, Annu. Rev. Cell Biol., 1993, 9: 27–66.

    Article  Google Scholar 

  5. Marchesi, V. T., Seers, E., Selective solubilization of a protein component of the red cell membdrane, Science, 1968, 159: 203–204.

    Article  Google Scholar 

  6. McKeown, C., Praitis, V., Austin, J.,sma-1 encodes a betaHspectrin homolog required forCaenorhabditis elegans morphogenesis, Development, 1998, 125: 2087–2098.

    Google Scholar 

  7. Zarnescu, D. C., Thomas, G. H., Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity inDrosophila, J. Cell Biol., 1999, 146: 1075–1086.[DOI]

    Article  Google Scholar 

  8. Lorenz, M., Bisikirska, B., Hanus-Lorenz, B. et al., Proteins reacting with anti-spectrin antibodies are present inChlamydomonas cells, Cell Biol. Int., 1995, 19: 625–632.[DOI]

    Article  Google Scholar 

  9. Wang, Y. D., Yan, L. F., Immunochemical identification of spectrins on the plasma membrane of leaf cells ofVicia faba, Chinese Sci. Bull., 1991, 36: 862–866.

    Google Scholar 

  10. De Ruijter, N., Emons, A. M., Immunodetection ofs pectrin antigens in plant cells, Cell Biol. Int., 1993, 17: 169–182.[DOI]

    Article  Google Scholar 

  11. Michaud, D., Guillet, G., Rogers, P. A., Identification of a 220 kD membrane-associated plant cell protein immunologically related to human β-spectrin, FEBS, 1991, 294: 77–80.[DOI]

    Article  Google Scholar 

  12. Reuzeau, C., Doolittle, K. W., McNally, J. G. et al., Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath, Protoplasma, 1997, 199: 173–197.

    Article  Google Scholar 

  13. Zhang, X. Q., Wang, X. C., Wang, C. G., Spectrin-like protein in guard cells ofVicia faba L., Progress in Natural Science, 1997, 7(3): 378–381.

    Google Scholar 

  14. DE Ruijter, N., Ketelaar, T., Sonal, S. D. et al., Spectrin-like proteins in plant nuclei, Cell Bio. Int., 2001, 24(7): 427–438.[DOI]

    Article  Google Scholar 

  15. Back, K. A., Buchanan, J. A., Malhotra, V. et al., Golgi spectrin: identification of an erythroid β-spectrin homolog associated with the Golgi complex, J. Cell Biol., 1994, 127: 707–723.[DOI]

    Article  Google Scholar 

  16. Faraday, C. D., Spanswick, R. M., Evidence for a membrane skeleton in higher plants: A spectrin-like polypeptide co-isolates with rice root plasma membranes, FEBS, 1993, 318: 313–316.[DOI]

    Article  Google Scholar 

  17. Derksen, J., Regulation of pollen tube growth, Acta Bot. Neerl., 1995, 44: 93–119.

    Google Scholar 

  18. Li, Y., Yan, L. F., Zee, S. Y. et al., Membrane skeleton spectrin in pollen and pollen tube, Chin. Sci. Bull., 1999, 44(10): 30–932.

    Google Scholar 

  19. Bennett, V., Baines, A. J., Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues, Physiol. Rev., 2001, 81(3): 1354–1392.

    Google Scholar 

  20. Chen, Z. Y., Zhu, G. L., Preparation of batch active sperm cells of Lanzhou lily fromultrorefrigeratory, Acta Botanica Sinica, 1995, 7: 589–593.

    Google Scholar 

  21. He, R. F., Ding, Y., Zhang, J. F. et al., Improvemnet in the two dimensional electrophoresis of proteins from the leaves of plant, Hereditas, 2000, 22(5): 319–321.

    Google Scholar 

  22. Xia, Z. H., Li, X. W., Yu, H. F. et al., Effects of salt and drought stress on H+-ATPase in the tonoplast of leaf cell ofCrassula agenten thumb, Acta Phytophysiologica Sinica, 2000, 26(5): 433–436.

    Google Scholar 

  23. Roland, J. C., Phosphotogstic acid-chromic acid as a selective electron dense stain for plasma membrane of plant cells, Stain Technol., 1972, 47: 195–200.

    Google Scholar 

  24. Wang, X., Cui, S. J., Ma, L. G. et al., The involvement of PLCIP3 signaling pathway in pollen tube growth, Acta Botanica Sinica, 2000, 42(7): 697–702.

    Google Scholar 

  25. Xing, L. J., Hua, B. G., Lou, C. H., Spectrin-like protein in the phloem of Cucumis sativus, Acta Botanica Sinica, 2002, 44(4): 391–394.

    Google Scholar 

  26. Beck, K. A., Buchanan, J. A., Nelson, W. J., Golgi membrane skeleton: Identification, localization and oligomer-ization of a 195-kD ankyrin isoform associated with the Golgi complex, J. Cell Sci., 1997, 110: 1239–1249.

    Google Scholar 

  27. De Matteis, M. A., Morrow, J. S., Spectrin tethers and mesh in the biosynthetic pathway, J. Cell Sci., 2000, 113: 2331–2343.

    Google Scholar 

  28. Holzinger, A., De Ruijter, N., Emons, A. M. et al., Spectrin-like proteins in green algae (desmidianceae), Cell Biol. Int., 1999, 23(5): 335–344.[DOI]

    Article  Google Scholar 

  29. Braun, M., Association of spectrin-like proteins with the actinorganized aggregate of endoplasmic reticulum in the spitzenkörper of gravitropically tip-growing plant cells, Plant Physiology, 2001, 125: 1611–1619.[DOI]

    Article  Google Scholar 

  30. Degouse′e, N., Gupta, G. D., Lew, R. R. et al., A putative spectrin-containing membrane skeleton in hyphal tips of neurospora crassa, Fungal Genetics and Biology, 2000, 30: 33–44.[DOI]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechen Wang.

About this article

Cite this article

Zhang, X., Yuan, M. & Wang, X. Identification and function analysis of spectrin-like protein in pollen tubes of lily (Lilium davidii Duch). Chin.Sci.Bull. 49, 1606–1610 (2004). https://doi.org/10.1007/BF03184130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184130

Keywords

Navigation