Advertisement

Chinese Science Bulletin

, Volume 49, Issue 15, pp 1554–1569 | Cite as

Genesis of zircon and its constraints on interpretation of U-Pb age

  • Yuanbao Wu
  • Yongfei Zheng
Reviews

Abstract

Zircon U-Pb dating is the most commonly used method for isotopic geochronology. However, it has been a difficult issue when relating zircon U-Pb ages to metamorphic conditions in complex metamorphic rocks. Much progress has been made in the past decade with respect to the genesis of zircon and its constraints on interpretation of U-Pb age. Three methods have been proposed to link zircon U-Pb age to metamorphic conditions: (i) internal structure; (ii) trace element feature; (iii) mineral inclusion composition. Magmatic zircon shows typical oscillatory zoning and/or sector zoning, whereas metamorphic zircon has internal structures such as no zoned, weakly zoned, cloudy zoned, sector zoned, planar zoned, and patched zoned ones. Zircons formed in different geological environments generally have characteristic internal structures. Magmatic zircons from different rock types have variable trace element abundances, with a general trend of increasing trace element abundances in zircons from ultramafic through mafic to granitic rocks. Zircons formed under different metamorphic conditions have different trace element characteristics that can be used to relate their formation to metamorphic conditions. It is an effective way to relate zircon growth to certain P-T conditions by studying the trace element partitioning between coexisting metamorphic zircon and garnet in high-grade metamorphic rocks containing both zircon and garnet. Primary mineral inclusions in zircon can also provide unambiguous constraints on its formation conditions. Therefore, interpretation of zircon U-Pb ages can be constrained by its internal structure, trace element composition, mineral inclusion and so on.

Keywords

zircon internal structure trace element mineral inclusion U-Pb age 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, J., Williams, I., Ellis, D., Pb, U. and Th diffusion in nature zircon, Nature, 1997, 390(13): 159–162CrossRefGoogle Scholar
  2. 2.
    Cherniak, D. J., Watson, E. B., Pb diffusion in zircon, Chemical Geology, 2000, 172: 5–24.CrossRefGoogle Scholar
  3. 3.
    Compston, W., Williams, I. S., Kirschvink, J. L. et al., Zircon U-Pb ages for the Early Cambrian time-scale, J. of Geological Society, London, 1992, 149: 171–184.CrossRefGoogle Scholar
  4. 4.
    Ireland, T. R., Williams, I. S., Considerations in zircon geochronology by SIMS, Zircon Reviews in Mineralogy and Geochemistry, 2003, 53: 215–238.CrossRefGoogle Scholar
  5. 5.
    Williams, I. S., U-Th-Pb geochronology by ion microprobe, in Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds. McKibben, M. A., Shanks, W. C., Ridley, W. I.), Review of Economical Geology, 1998, 7: 1–35.Google Scholar
  6. 6.
    Liang, X., Li, X., Liu, Y., Simultaneous determination of U-Pb ages and trace elements in single zircon by using LAM-ICP-MS, Rock and Mineral Analysis (in Chinese with English abstract), 1999, 18(4): 253–258.Google Scholar
  7. 7.
    Yuan Honglin, Wu Fuyuan, Gao Shan et al., LA-ICPMS zircon U-Pb dating and REE analysis from Cenozoic intrusions in northeast region, China, Chinese Sci. Bull., 2003, 48(22): 2411–2421.Google Scholar
  8. 8.
    Feng, R., Machado, N., Ludden, J., Lead geochronology of zircon by laser-inductively coupled plasma mass spectrometry (ICP-MS), Geochim. Cosmochim. Acta, 1993, 57: 3479–3486.CrossRefGoogle Scholar
  9. 9.
    Fryer, D., Jackson, S., Longerich, H., The application of laser ablation micro-probe-inductively couple plasma mass spectormetry (LAM-ICP-MS) toin situ (U)-Pb geochronology, Chemical Geology, 1993, 109: 1–8.CrossRefGoogle Scholar
  10. 10.
    Horn, I., Rudnick, R. L., Mcdonough, W. F., Precise element and isotope ratio measurement by simultaneous solution nebulisation and laser ablation-ICP-MS: Application to U-Pb geochronology, Chem. Geol., 2000, 164: 281–301.CrossRefGoogle Scholar
  11. 11.
    Kosler, J., Sylvester, P. J., Present trends and the future of zircon in geochronology: Laser ablation ICPMS, Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53: 243–271.CrossRefGoogle Scholar
  12. 12.
    Hanchar, J. M., Hoskin, P. W. O., Zircon, Reviews in Mineralogy and Geochemistry, 2003, 53: V-VII.CrossRefGoogle Scholar
  13. 13.
    Müller, W., Strengthening the link between geochronology, textures and petrology, Earth and Planetary Science Letters, 2003, 206: 237–251.CrossRefGoogle Scholar
  14. 14.
    Gebauer, D., Schertl, H. P., Brix, M. et al., 35 Ma old ultrahighpressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Wester Alps. Lithos., 1997, 41: 5–24.Google Scholar
  15. 15.
    Hacker, B. R., Ratshbacher, L., Webb, L. et al., U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci. Lett., 1998, 161: 215–230.CrossRefGoogle Scholar
  16. 16.
    Hermann, J., Rubatto, D., Korsakov, A., Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan), Contrib. Mineral Petrol., 2001, 141: 66–82.Google Scholar
  17. 17.
    Katayama, I., Maruyama, S., Parkinson, C. D., Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan, Earth and Planetary Science Letters, 2001, 188: 185–198.CrossRefGoogle Scholar
  18. 18.
    Mojzsis, S. J., Harrison, T. M., Pidgeon, R. T., Oxygen isotope evidence from ancient zircons for liquid water at the earth’s surface 4300 Myr ago, Nature, 2001, 409: 178–181.CrossRefGoogle Scholar
  19. 19.
    Rubatto, D., Gebauer, D., Fanning, M., Jurassic formation and Eocene subductions for the geodynamic evolution of the Central and Western Alps, Contrib. Mineral. Petrol., 1998, 132: 269–287.CrossRefGoogle Scholar
  20. 20.
    Rubatto, D., Gebauer, G., Compagnoni, R., Dating of eclogitefacies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps), Earth and Planetary Science Letters, 1999, 167: 141–158.CrossRefGoogle Scholar
  21. 21.
    Rubatto, D., Williams, I. S., Imaging, trace element geochemistry and mineral inclusions: linking U-Pb ages with metamorphic conditions, EOS, 2000, 21: 25.Google Scholar
  22. 22.
    Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism, Chemical Geology, 2002, 184: 123–138.CrossRefGoogle Scholar
  23. 23.
    Rubatto, D., Hermann, J., Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones, Geochimica et Cosmochimica Acta, 2003, 67(12): 2173–2187.CrossRefGoogle Scholar
  24. 24.
    Schaltegger, U., Fanning, C. M., Gunther, D. et al., Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional andin-situ U-Pb isotope, cathodoluminescence and microchemical evidence, Contrib. Mineral Petrol., 1999, 134: 186–201.CrossRefGoogle Scholar
  25. 25.
    Vavra, G., Gebauer, D., Schmid, R., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122: 337–358.CrossRefGoogle Scholar
  26. 26.
    Vavra, G., Schmid, R., Gebauer, D., Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: geochronology of the Ivren Zone(Southern Alps), Contrib. Mineral Petrol., 1999, 134: 380–404.CrossRefGoogle Scholar
  27. 27.
    Whitehouse, M. J., Kamber, B. S., On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation, Earth and Planetary Science Letters, 2002, 204: 333–346.CrossRefGoogle Scholar
  28. 28.
    Whitehouse, M. J., Platt, J. P., Dating high-grade metamorphismconstraints from rare-earth elements in zircons and garnet, Contrib. Mineral Petrol., 2003, 145: 61–74.Google Scholar
  29. 29.
    Wilde, S. A., Valley, J. W., Peck, W. H. et al., Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature, 2001, 409: 175–178.CrossRefGoogle Scholar
  30. 30.
    Pidgeon, R. T., Nemchin, A. A., Hitchen, G. J., Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages, Contrib. Mineral Petrol., 1998, 132: 288–299.CrossRefGoogle Scholar
  31. 31.
    Nasdala, L., Wenzel, M., Vavra, G. et al., Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contrib. to Mineral. and Petrol., 2001, 141: 125–144.Google Scholar
  32. 32.
    Hanchar, J. M., Miller, C. F., Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories, Chemical Geology, 1993, 110: 1–13.CrossRefGoogle Scholar
  33. 33.
    Hanchar, J. M., Rudnick, R. L., Revealing hidden structures: the application of cathodoluminescence and back-scatter electrical imaging to dating zircons from lower crustal xenoliths, Lithos., 1995, 36: 289–303.CrossRefGoogle Scholar
  34. 34.
    Crofu, F., Hanchar, J. M., Hoskin, P. W. O. et al., Atlas of zircon textures, Reviews in Mineralogy and Geochemistry, 2003, 53: 469–495.CrossRefGoogle Scholar
  35. 35.
    Rubatto, D., Gebauer, D., Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe: Some Examples from the Western Alps, Cathodoluminescence in Geoscience, Berlin, Heidelberg: Springer-Verlag, 2000, 373–400.Google Scholar
  36. 36.
    Zhao, Zifu, Zheng Yongfei, Wei Chunsheng ET AL., Zircon U-Pb age, element and isotope geochemistry of mesozoic mafic-ultramafic rocks at Shacun and Jiaoziyan in North Dabie, Geological Journal of China Universities (in Chinese with English abstract), 2003, 9(2): 139–162.Google Scholar
  37. 37.
    Hoskin, P. W. O., Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53: 27–55.CrossRefGoogle Scholar
  38. 38.
    Belusova, E., Griffin, W., Pearson, N. J., Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons, Mineral Mag., 1998, 62: 355–366.CrossRefGoogle Scholar
  39. 39.
    Konzett, J., Armstrong, R. A., Sweeny, R. J. et al., The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths, Earth Planet Sci. Lett., 1998, 160: 133–145.CrossRefGoogle Scholar
  40. 40.
    Guo, J., O’Reilly, S. Y., Griffin, W. L., Zircon inclusions in corundum megacrystals, 1. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts, Geochem CosmochimActa, 1996, 60: 237–269.Google Scholar
  41. 41.
    Upton, B. G. J., Hinton, R. W., Aspen, P. et al., Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland, J. Petrol., 1999, 40: 935–956.CrossRefGoogle Scholar
  42. 42.
    Keay, S., Lister, G., Buick, I., The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece, Tectonophysics, 2001, 342: 275–312.Google Scholar
  43. 43.
    Roberts, M., Finger, F., Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 1997, 25(4): 319–322.CrossRefGoogle Scholar
  44. 44.
    Bingen, B., Austrheim, H., Whitehouse, M., Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology, J. Petrol., 2001, 42(2): 355–375.CrossRefGoogle Scholar
  45. 45.
    Fraser, G., Ellis, D., Eggins, S., Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks, Geology, 1997, 25(7): 607–610.CrossRefGoogle Scholar
  46. 46.
    Dubinskaa, E., Bylinab, P., Kozlowskia, A. et al., U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, S W Poland), Chemical Geology, 2004, 203: 183–203.CrossRefGoogle Scholar
  47. 47.
    Liati, A., Gebauer, D., Constraining the pregrade and regrade P-T-t path of Eocene HP rocks by SHRIMP dating difference zircon domain: inferred rated of heating-burial, cooling and exhumation for central Rhodope, northern Greece, Contrib. Minern. Petrol., 1999, 135: 340–354.CrossRefGoogle Scholar
  48. 48.
    Geisler, T., Ulonska, M., Schleicher, H. et al., Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions, Chemical Geology, 2001, 141: 53–65.Google Scholar
  49. 49.
    Hoskin, P. W. O., Black, L. P., Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, J. Metamorphic Geol., 2000, 18: 423–439.CrossRefGoogle Scholar
  50. 50.
    Pidgeon, R. T., Recrystallization of oscillatory-zoned zircon: some geochronological and petrological implications, Contrib. Mineral Petrol., 1992, 110: 463–472.CrossRefGoogle Scholar
  51. 51.
    Rizvanova, N. G., Lenchenkov, O. A., Belous, A. E. et al., Zircon reaction and stability of the U-Pb isotope system during the interaction with carbonate fluid: experimental hydrothermal study, Contrib. Mineral Petrol., 2000, 139: 101–134.CrossRefGoogle Scholar
  52. 52.
    Tomaschek, F., Kennedy, A. K., Villa, I. M. et al., Zircons from Syros, Cyclades, Greece-recrystallization and mobilization of zircon during high-pressure metamorphism, Jour. of Petrology, 2003, 44(11): 1977–2002.CrossRefGoogle Scholar
  53. 53.
    Liati, A., Gebauer, D., Wysoczanski, R., U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism, Chem. Geology, 2002, 184: 281–299.CrossRefGoogle Scholar
  54. 54.
    Möller, A., O’Brien, P. J., Kennedy, A. et al., Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway), EMU Notes in Mineralogy, 2003, 5: 65–82.Google Scholar
  55. 55.
    Mezger, K., Krogstad, E. J., Interpretation of discordant U-Pb zircon ages: An evaluation, J. Metamorphic Geol., 1997, 15: 127–140.CrossRefGoogle Scholar
  56. 56.
    Rowley, D. B., Xue, F., Tucker, R. D., Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Ph zircon geochronology, Earth and Planet Science Letters, 1997, 151: 191–203.CrossRefGoogle Scholar
  57. 57.
    Mojzsis, S. J., Harrison, T. M., Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland), Earth and Planetary Science Letters, 2002, 202: 563–576.CrossRefGoogle Scholar
  58. 58.
    Wu Yuanbao, Chen Daogong, Xia Qunke et al.,In-situ trace element analyses of zircons from Dabieshan Huangzhen eclogite— Trace element characteristics of eclogite-facies metamorphic zircon, Chin. Sci. Bull., 2002, 47(16): 1398–1401.CrossRefGoogle Scholar
  59. 59.
    Gebauer, D. A., P-T-t path for an (ultra-?) high-pressure ultramafic-mafic rockassociation and its felsic country-rocks based on SHRIMP—Dating of magmatic and metamorphic zircon domains, example: Alpe Arami (Central Swiss Alps), in Earth Processes Reading the Isotopic Code, Geophysical Monograph, 1996, 95: 307–329.Google Scholar
  60. 60.
    Hidaka, H., Shimizu, H., Adachi, M., U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: evidence for an Archean provenance, Chem. Geol., 2002, 187: 278–293.CrossRefGoogle Scholar
  61. 61.
    Belousova, E., Griffin, W., Suzanne, Y., Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral Petrol., 2002, 143: 602–622.Google Scholar
  62. 62.
    Hermann, J., Allanite: thorium and light rare earth element carrier insubducted crust, Chemical Geology, 2002, 192: 289–306.CrossRefGoogle Scholar
  63. 63.
    Nozhkin, A. D., Turkina, O. M., Radiogeochemistry of the charnokite-granulite complex, Sharyzhalgay Window, Siberian Platform, Geochem. Int., 1995, 32: 62–78.Google Scholar
  64. 64.
    Rollinson, H. R., Windley, B. F., Selective elemental depletion during metamorphism of Archean granulites, Contrib. Mineral. Petrol., 1980, 72: 257–263.CrossRefGoogle Scholar
  65. 65.
    Hoskin, P. W. O., Ireland, T., Rare earth element chemistry of zircon and its use as a provenance indicator, Geology, 2000, 28(7): 627–630.CrossRefGoogle Scholar
  66. 66.
    Peck, W. H., Valley, J., Wilde, S., Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for highδ18O continental crust and oceans in the Early Archean, Geochimica et Cosmochimica Acta, 2001, 65(22): 4215–4229.CrossRefGoogle Scholar
  67. 67.
    Valley, J. W., Peck, W. H., King, E. M., A cool early Earth, Geology, 2002, 30: 351–354.CrossRefGoogle Scholar
  68. 68.
    Wu Yuanbao, Chen Daogong, Xia Qunke et al.,In-situ trace element analyses and Pb-Pb dating of zircons by LAM-ICP-MS in granulite from Huangtuling, Dabieshan, Science in China, Series D, 2003, 46(11): 1161–1170.CrossRefGoogle Scholar
  69. 69.
    Rubatto, D., Liati, A., Gebauer, D., Dating UHP metamorphism, EMU Notes in Mineralogy, 2003, 5: 341–363.Google Scholar
  70. 70.
    Rudnick, R., Barth, M., Horn, I., Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle, Science, 2000, 287: 278–281.CrossRefGoogle Scholar
  71. 71.
    Whitehuse, M., Combingin situ zircon REE and U-Th-Pb geochronology: A petrogenetic dating tool, Journal of Conference Abstracts, 2000, 5(2): 1086.Google Scholar
  72. 72.
    Pidgeon, R. T., O’neil, J. R., Silver, R. T., The interdependence of U-Pb stability, crystallinity and external conditions in natural zircons—an early experimental study, Leon T Silver 70th Birthday Symposium and Celebration, extend abstract, 1995,225–231.Google Scholar
  73. 73.
    Watson, B., Cherniak, D. J., Hanchar, J. M. et al., The incorporation of Pb into zircon, Chem. Geol., 1997, 141: 19–33.CrossRefGoogle Scholar
  74. 74.
    Liu, F., Xu, Z., Katayama, I., Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1,Chinese Continental Scientific Drilling Project, Lithos, 2001a, 59: 199–215.CrossRefGoogle Scholar
  75. 75.
    Liu, J., Ye, K., Maruyama, S., Mineral inclusions in zircon from gneisses in the Ultrahigh-pressure zone of the Dabie Mountains, China, Journal of Geology, 2001b, 109: 523–535.CrossRefGoogle Scholar
  76. 76.
    Tabata, H., Yamauchi, K., Maruyama, S., Tracing the extent of a UHP metamorphic terrane: mineral-inclusion study of zircons in gneisses from the Dabie Shan, in When Continents Collide: Geodynamics and Geochemistry of Ultra-High-Pressure Rocks (eds. Hacker, B., Liou, J.), Dordrecht: Kluwer, 1998, 261–274.Google Scholar
  77. 77.
    Ye, K., Yao, Y., Katayama, I., Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic geiss, Lithos, 2000, 52: 157–164.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations