Chinese Science Bulletin

, Volume 49, Issue 10, pp 1051–1054 | Cite as

Detecting chimeric 5′/3′UTRs with cross-chromosomal splicing by bioinformatics

  • Zhihua Zhang
  • Yong Zhang
  • Baochen Shi
  • Wei Deng
  • Yi Zhao
  • Runsheng Chen


The 5′/3′ UTRs of mRNA are crucial in translational regulation, and several serious diseases are believed to be associated with abnormal splicing of these parts of the mRNA sequence. In this work a novel method which uses sequence alignment database searching for detecting chimeric 5′3′ UTRs with cross-chromosomal splicing is reported. Eight highly credible instances of cross-chromosomal splicing have been found using this method, representing additional confirmation of the existence of cross-chromosomal splicing events provided by bioinformatics tools. Since no conserved motif has been found in any of the eight instances, and at the same time current prediction algorithms produce only trivial secondary structures at the “splicing sites”, it is not possible to identify any specific signal leading to the splicing.


5′/3′ UTRs mRNA trans-splicing chromosomal translocations chimeric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuersten, S., Goodwin, E. B., The power of the 3′ UTR: translational control and development, Nat. Rev. Genet, 2003, 4(8): 626–637.CrossRefGoogle Scholar
  2. 2.
    Gray, N. K., Translational control by repressor proteins binding to the 5′ UTR of mRNAs, Methods Mol. Biol., 1998, 77: 379–397.Google Scholar
  3. 3.
    Mazumder, B., Seshadri, V., Fox, P. L., Translational control by the 3−UTR: the ends specify the means, Trends Biochem. Sci., 2003, 28(2): 91–98.CrossRefGoogle Scholar
  4. 4.
    Wilkie, G. S., Dickson, K. S., Gray, N. K., Regulation of mRNA translation by 5′and 3′-UTR-binding factors, Trends Biochem. Sci., 2003, 28(4): 182–188.CrossRefGoogle Scholar
  5. 5.
    Latsi, P., Vassilakis, D., Sato, H. et al., Analysis of IL-12 p40 subunit gene and IFN-gamma G5644A polymorphisms in Idiopathic Pulmonary Fibrosis, Respir. Res., 2003, 4(1): 6.CrossRefGoogle Scholar
  6. 6.
    Lahiri, D. K., Chen, D., Ge, Y. W. et al., Role of cytokines in the gene expression of amyloid beta-protein precursor: Identification of a 5′-UTR-Binding nuclear factor and its implications in Alzheimer’s disease, J. Alzheimers Dis., 2003, 5(2): 81–90.Google Scholar
  7. 7.
    Konarska, M. M., Padgett, R. A., Sharp, P. A., Trans splicing of mRNA precursorsin vitro, Cell, 1985, 42: 165–171.CrossRefGoogle Scholar
  8. 8.
    Bonen, L., Trans-splicing of pre-mRNA in plants, animals, and protists, Faseb J., 1993, 7(1): 40–46.Google Scholar
  9. 9.
    Pirrotta, V., Trans-splicing in Drosophila, Bioessays, 2002, 24(11): 988–991.CrossRefGoogle Scholar
  10. 10.
    Bruzik, J. P., Maniatis, T., Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells, Nature, 1992, 360(6405): 692–695.CrossRefGoogle Scholar
  11. 11.
    Bruzik, J. P., Maniatis, T., Enhancer-dependent interaction between 5′ and 3′ splice sites in trans, Proc. Natl. Acad. Sci. USA, 1995, 92(15): 7056–7059.CrossRefGoogle Scholar
  12. 12.
    Puttaraju, M., Jamison, S. F., Mansfield, S. G. et al., Spliceosomemediated RNA trans-splicing as a tool for gene therapy, Nat. Biotechnol, 1999, 17(3): 246–252.CrossRefGoogle Scholar
  13. 13.
    Caudevilla, C., Serra, D., Miliar, A. et al., Hegardt., Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver, Proc. Natl. Acad. Sci. USA, 1998, 95(21): 12185–12190.CrossRefGoogle Scholar
  14. 14.
    Hyde, M., Block-Alper, L., Felix, J. et al., Induction of secretory pathway components in yeast is associated with increased stability of their mRNA, J. Cell Biol., 2002, 156(6): 993–1001.CrossRefGoogle Scholar
  15. 15.
    Rabbitts, T. H., Stocks, M., Chromosomal translocation products engender new intracellular therapeutic technologies, Nat. Med., 2003, 9(4): 383–386.CrossRefGoogle Scholar
  16. 16.
    Lewin, B., Genes VII, 8th edn., New York: Wiley, 2000.Google Scholar
  17. 17.
    Lin, R. J., Sternsdorf, T., Tini, M. et al., Transcriptional regulation in acute promyelocytic leukemia, Oncogene, 2001(49): 7204–7215.Google Scholar
  18. 18.
    Nakamura, S., Matsumoto, T., Nakamura, S. et al., Chromosomal translocation t(ll; 18)(q21; q21) in gastrointestinal mucosa associated lymphoid tissue lymphoma, J. Clin. Pathol., 2003, 56(1): 36–42.CrossRefGoogle Scholar
  19. 19.
    Sit, K. H., Wong, H. B., Translocation dicentric chromosomes in prostaglandin E2 induced abortuses and possible aneusomy through asynchronous centromeric divisions, Cytogenet Cell Genet, 1981, 29(1): 60–64.CrossRefGoogle Scholar
  20. 20.
    Pergolizzi, R. G., Ropper, A. E. et al.,In vivo trans-splicing of 5′ and 3′ segments of pre-mRNA directed by corresponding DNA sequences delivered by gene transfer, Mol. Ther., 2003, 8: 999–1008.CrossRefGoogle Scholar
  21. 21.
    Pesole, G., Liuni, S., Grillo, G. et al., UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs, Update 2002, Nucleic Acids Res., 2002, 30(1): 335–340.CrossRefGoogle Scholar
  22. 22.
    Lander, E. S., Linton, L. M. et al., Initial sequencing and analysis of the human genome, Nature, 2001, 409(6822): 860–921.CrossRefGoogle Scholar
  23. 23.
    Altschul, S. F., Madden, T. L. et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, 25(17): 3389–3402.CrossRefGoogle Scholar
  24. 24.
    Solnick, D., Trans splicing of mRNA precursors, Cell, 1985, 42(1): 157–164.CrossRefGoogle Scholar
  25. 25.
    Li, S., Liao, J., Cutler, G. et al., Comparative analysis of human genome assemblies reveals genome-level differences, Genomics, 2002, 80(2): 138–139.CrossRefGoogle Scholar
  26. 26.
    Romani, A., Guerra, E., Trerotola, M. et al., Detection and analysis of spliced chimeric mRNAs in sequence databanks, Nucleic Acids Res., 2003, 31(4): 17.CrossRefGoogle Scholar
  27. 27.
    Thompsom, J. D., Higgins, D., Gibson, T. J. et al., CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matri choic, Nucleic Acids Res., 1994, 22(22): 4673–4680.CrossRefGoogle Scholar
  28. 28.
    Mathews, D. H., Sabina, J., Zuker, M., Turner, D. H., Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, J. Mol. Bio., 1999, 288: 911–940.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Zhihua Zhang
    • 1
  • Yong Zhang
    • 1
  • Baochen Shi
    • 1
  • Wei Deng
    • 1
  • Yi Zhao
    • 2
  • Runsheng Chen
    • 1
    • 2
  1. 1.Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations