Skip to main content
Log in

Detecting chimeric 5′/3′UTRs with cross-chromosomal splicing by bioinformatics

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The 5′/3′ UTRs of mRNA are crucial in translational regulation, and several serious diseases are believed to be associated with abnormal splicing of these parts of the mRNA sequence. In this work a novel method which uses sequence alignment database searching for detecting chimeric 5′3′ UTRs with cross-chromosomal splicing is reported. Eight highly credible instances of cross-chromosomal splicing have been found using this method, representing additional confirmation of the existence of cross-chromosomal splicing events provided by bioinformatics tools. Since no conserved motif has been found in any of the eight instances, and at the same time current prediction algorithms produce only trivial secondary structures at the “splicing sites”, it is not possible to identify any specific signal leading to the splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuersten, S., Goodwin, E. B., The power of the 3′ UTR: translational control and development, Nat. Rev. Genet, 2003, 4(8): 626–637.

    Article  Google Scholar 

  2. Gray, N. K., Translational control by repressor proteins binding to the 5′ UTR of mRNAs, Methods Mol. Biol., 1998, 77: 379–397.

    Google Scholar 

  3. Mazumder, B., Seshadri, V., Fox, P. L., Translational control by the 3−UTR: the ends specify the means, Trends Biochem. Sci., 2003, 28(2): 91–98.

    Article  Google Scholar 

  4. Wilkie, G. S., Dickson, K. S., Gray, N. K., Regulation of mRNA translation by 5′and 3′-UTR-binding factors, Trends Biochem. Sci., 2003, 28(4): 182–188.

    Article  Google Scholar 

  5. Latsi, P., Vassilakis, D., Sato, H. et al., Analysis of IL-12 p40 subunit gene and IFN-gamma G5644A polymorphisms in Idiopathic Pulmonary Fibrosis, Respir. Res., 2003, 4(1): 6.

    Article  Google Scholar 

  6. Lahiri, D. K., Chen, D., Ge, Y. W. et al., Role of cytokines in the gene expression of amyloid beta-protein precursor: Identification of a 5′-UTR-Binding nuclear factor and its implications in Alzheimer’s disease, J. Alzheimers Dis., 2003, 5(2): 81–90.

    Google Scholar 

  7. Konarska, M. M., Padgett, R. A., Sharp, P. A., Trans splicing of mRNA precursorsin vitro, Cell, 1985, 42: 165–171.

    Article  Google Scholar 

  8. Bonen, L., Trans-splicing of pre-mRNA in plants, animals, and protists, Faseb J., 1993, 7(1): 40–46.

    Google Scholar 

  9. Pirrotta, V., Trans-splicing in Drosophila, Bioessays, 2002, 24(11): 988–991.

    Article  Google Scholar 

  10. Bruzik, J. P., Maniatis, T., Spliced leader RNAs from lower eukaryotes are trans-spliced in mammalian cells, Nature, 1992, 360(6405): 692–695.

    Article  Google Scholar 

  11. Bruzik, J. P., Maniatis, T., Enhancer-dependent interaction between 5′ and 3′ splice sites in trans, Proc. Natl. Acad. Sci. USA, 1995, 92(15): 7056–7059.

    Article  Google Scholar 

  12. Puttaraju, M., Jamison, S. F., Mansfield, S. G. et al., Spliceosomemediated RNA trans-splicing as a tool for gene therapy, Nat. Biotechnol, 1999, 17(3): 246–252.

    Article  Google Scholar 

  13. Caudevilla, C., Serra, D., Miliar, A. et al., Hegardt., Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver, Proc. Natl. Acad. Sci. USA, 1998, 95(21): 12185–12190.

    Article  Google Scholar 

  14. Hyde, M., Block-Alper, L., Felix, J. et al., Induction of secretory pathway components in yeast is associated with increased stability of their mRNA, J. Cell Biol., 2002, 156(6): 993–1001.

    Article  Google Scholar 

  15. Rabbitts, T. H., Stocks, M., Chromosomal translocation products engender new intracellular therapeutic technologies, Nat. Med., 2003, 9(4): 383–386.

    Article  Google Scholar 

  16. Lewin, B., Genes VII, 8th edn., New York: Wiley, 2000.

    Google Scholar 

  17. Lin, R. J., Sternsdorf, T., Tini, M. et al., Transcriptional regulation in acute promyelocytic leukemia, Oncogene, 2001(49): 7204–7215.

  18. Nakamura, S., Matsumoto, T., Nakamura, S. et al., Chromosomal translocation t(ll; 18)(q21; q21) in gastrointestinal mucosa associated lymphoid tissue lymphoma, J. Clin. Pathol., 2003, 56(1): 36–42.

    Article  Google Scholar 

  19. Sit, K. H., Wong, H. B., Translocation dicentric chromosomes in prostaglandin E2 induced abortuses and possible aneusomy through asynchronous centromeric divisions, Cytogenet Cell Genet, 1981, 29(1): 60–64.

    Article  Google Scholar 

  20. Pergolizzi, R. G., Ropper, A. E. et al.,In vivo trans-splicing of 5′ and 3′ segments of pre-mRNA directed by corresponding DNA sequences delivered by gene transfer, Mol. Ther., 2003, 8: 999–1008.

    Article  Google Scholar 

  21. Pesole, G., Liuni, S., Grillo, G. et al., UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs, Update 2002, Nucleic Acids Res., 2002, 30(1): 335–340.

    Article  Google Scholar 

  22. Lander, E. S., Linton, L. M. et al., Initial sequencing and analysis of the human genome, Nature, 2001, 409(6822): 860–921.

    Article  Google Scholar 

  23. Altschul, S. F., Madden, T. L. et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, 25(17): 3389–3402.

    Article  Google Scholar 

  24. Solnick, D., Trans splicing of mRNA precursors, Cell, 1985, 42(1): 157–164.

    Article  Google Scholar 

  25. Li, S., Liao, J., Cutler, G. et al., Comparative analysis of human genome assemblies reveals genome-level differences, Genomics, 2002, 80(2): 138–139.

    Article  Google Scholar 

  26. Romani, A., Guerra, E., Trerotola, M. et al., Detection and analysis of spliced chimeric mRNAs in sequence databanks, Nucleic Acids Res., 2003, 31(4): 17.

    Article  Google Scholar 

  27. Thompsom, J. D., Higgins, D., Gibson, T. J. et al., CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matri choic, Nucleic Acids Res., 1994, 22(22): 4673–4680.

    Article  Google Scholar 

  28. Mathews, D. H., Sabina, J., Zuker, M., Turner, D. H., Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, J. Mol. Bio., 1999, 288: 911–940.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runsheng Chen.

About this article

Cite this article

Zhang, Z., Zhang, Y., Shi, B. et al. Detecting chimeric 5′/3′UTRs with cross-chromosomal splicing by bioinformatics. Chin. Sci. Bull. 49, 1051–1054 (2004). https://doi.org/10.1007/BF03184036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184036

Keywords

Navigation