Chinese Science Bulletin

, Volume 49, Issue 9, pp 967–971 | Cite as

Genetic algorithm in DNA computing: A solution to the maximal clique problem



Genetic algorithm is one of the possible ways to break the limit of brute-force method in DNA computing. Using the idea of Darwinian evolution, we introduce a genetic DNA computing algorithm to solve the maximal clique problem. All the operations in the algorithm are accessible with today’s molecular biotechnology. Our computer simulations show that with this new computing algorithm, it is possible to get a solution from a very small initial data pool, avoiding enumerating all candidate solutions. For randomly generated problems, genetic algorithm can give correct solution within a few cycles at high probability. Although the current speed of a DNA computer is slow compared with silicon computers, our simulation indicates that the number of cycles needed in this genetic algorithm is approximately a linear function of the number of vertices in the network. This may make DNA computers more powerfully attacking some hard computational problems.


DNA computer genetic algorithm NP-complete problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruben, A. J., Landweber, L. F., The past, present and future of molecular computing, Nature Reviews Molecular Cell Biology, 2000, 1: 69–72.CrossRefGoogle Scholar
  2. 2.
    Adleman, L., Molecular computation of solutions to combinatorial problems, Science, 1994, 266: 1021–1024.CrossRefGoogle Scholar
  3. 3.
    Ouyang, Q., Kaplan, P. D., Liu S. et al., DNA solution of the maximal clique problem, Science, 1997, 278: 446–449.CrossRefGoogle Scholar
  4. 4.
    Braich, R. S., Chelyapov, N., Johnson, C. et al., Solution of a 20-variable 3-SAT problem on a DNA computer, Science, 2002, 296: 499–502.CrossRefGoogle Scholar
  5. 5.
    Faulhammer, D., Cukras, A. R., Lipton, R. J. et al., Molecular computation: RNA solutions to chess problems, Proc. Natl. Acad. Sci., 2000, U.S.A. 97: 1385–1389.CrossRefGoogle Scholar
  6. 6.
    Benenson, Y., Paz-Elizur, T., Adar, R. et al., Programmable and autonomous computing machine made of biomolecules, Nature, 2001, 414: 430–434.CrossRefGoogle Scholar
  7. 7.
    Liu, Q., Wang, L., Frutos, A. G. et al., DNA computing on surfaces, Nature, 2000, 403: 175–179.CrossRefGoogle Scholar
  8. 8.
    Ogihara, M., Ray, A., DNA computing on a chip, Nature, 2000, 403: 143–144.CrossRefGoogle Scholar
  9. 9.
    Sakamoto, K., Gouzu, H., Komiya, K. et al., Molecular computation by DNA hairpin formation, Science, 2000, 288: 1223–1226.CrossRefGoogle Scholar
  10. 10.
    Wang, L., Hall, J. G., Lu, M. et al., A DNA computing readout operation based on structure-specific cleavage, Nat. Biotechnol., 2001, 19: 1053–1059.CrossRefGoogle Scholar
  11. 11.
    Zimmermann, K. -H., On applying molecular computation to binary linear codes, IEEE Trans. Inform. Theory, 2002, 48: 505–510.CrossRefGoogle Scholar
  12. 12.
    Impagliazzo, R., Paturi, R., Zane, F., Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 2001, 23: 512–530 (doi: 10.1006/jcss.2001.1774).CrossRefGoogle Scholar
  13. 13.
    Holland, J. H., Genetic algorithm, Scientific American, 1992, 267(1): 66–72.CrossRefGoogle Scholar
  14. 14.
    Foster, J. A., Evolutionary computation, Nat. Rev. Genet., 2001, 2: 428–436.CrossRefGoogle Scholar
  15. 15.
    Chiu, D. T., Pezzoli, E., Wu, H. et al., Using three-dimensional microfluidic networks for solving computationally hard problems, Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 2961–2966.CrossRefGoogle Scholar
  16. 16.
    Kaplan, P. D., Ouyang, Q., Thaler, D. S. et al., Parallel overlap assembly for the construction of computational DNA libraries, J. Theor. Biol., 1997, 188: 333–341 (doi: 10.1006/jtbi.l997.0475).CrossRefGoogle Scholar
  17. 17.
    Arita, M., Kobayashi, S., The power of sequence design in DNA computing, ICCIMA 2001: Proceedings of 4th International Conference on Computational Intelligence and Multimedia Applications, 163–167.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Center for Theoretical Biology and Department of PhysicsPeking UniversityBeijingChina

Personalised recommendations