Advertisement

Chinese Science Bulletin

, Volume 49, Issue 9, pp 863–871 | Cite as

Sticker DNA computer model — Part II: Application

  • Jin Xu
  • Sanping Li
  • Yafei Dong
  • Xiaopeng Wei
Review

Abstract

Sticker model is one of the basic models in the DNA computer models. This model is coded with single-double stranded DNA molecules. It has the following advantages that the operations require no strands extension and use no enzymes; What’s more, the materials are reusable. Therefore, it arouses attention and interest of scientists in many fields. In this paper, we extend and improve the sticker model, which will be definitely beneficial to the construction of DNA computer. This paper is the second part of our series paper, which mainly focuses on the application of sticker model. It mainly consists of the following three sections: the matrix representation of sticker model is first presented; then a brief review of the past research on graph and combinatorial optimization, such as the minimal set covering problem, the vertex covering problem, Hamiltonian path or cycle problem, the maximal clique problem, the maximal independent problem and the Steiner spanning tree problem, is described; Finally a DNA algorithm for the graph isomorphic problem based on the sticker model is given.

Keywords

DNA computing sticker model k-bit sticker model combinatorial optimization problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, J., Dong, Y. F., Wei, X. P., Sticker DNA computer model, Part I: Theory, Chinese Science Bulletin, 2004, 49(8): 772–780.Google Scholar
  2. 2.
    Roweis, S., Winfree, E., Burgoyne, R. et al., A sticker based archtecture for DNA computation, DNA Based Computers (eds. Baum, E. B., Lipton, R. J.), Proc. 2nd Annual Meeting, Princeton, 1999, 1–27.Google Scholar
  3. 3.
    Gao Lin, Xu Jin, DNA solution of vertex cover problem based on sticker model, Chinese Journal of Electronics, 2002, 11(2): 280–284.Google Scholar
  4. 4.
    Braich, R. S., Chelyapov, N., Cliff, J. et al., Solution of a 20-variable 3-SAT problem on a DNA computer, Sci., 2002, 296(19): 499–502.CrossRefGoogle Scholar
  5. 5.
    Zimmermann, K., Efficient DNA sticker algorithms for NP-complete graph problems, Computer Physics Communications, 2002, 144: 297–309.CrossRefGoogle Scholar
  6. 6.
    Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, London, Basingtoke and New York: The Macmillan Press LTD, 1976.Google Scholar
  7. 7.
    Papadimitriou, C. H., Steiglitz, K., Combinatorial Optimization: Algorithms and Complexity, Englewood Cliffs, N J: Prentice Hall, 1982, 358–409Google Scholar
  8. 8.
    Tinhofer, G., Computational Graph Theory, Vienna: Springer-Verlag, 1990.Google Scholar
  9. 9.
    Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, New York: Academic Press, 1980.Google Scholar
  10. 10.
    Vinnakota, B., Andrews, J., Repair of RAMs with clustered faults, Proc. Int’l Conf. Computer-Aided-Design, New York: Academic Press, 1992: 582–585.Google Scholar
  11. 11.
    Paias, A., Paixao, J., State space relaxation for set covering problem related to bus driver scheduling, Eur. J. Opl. Res., 1993, 71: 303–316.CrossRefGoogle Scholar
  12. 12.
    Beasley, J. E., Jornsten, K., Enhancing an algorithm for set covering problems, Eur. J. Opl. Res., 1992, 58: 293–300.CrossRefGoogle Scholar
  13. 13.
    Lorena, L. A. N., Belo, L. F., A surrogate heuristics for set covering problems, Eur. J. Opl. Res., 1994, 79: 138–150.CrossRefGoogle Scholar
  14. 14.
    Fisher, M. L., Kedia, D., Optimal solution of set covering /partitioning problems using dual heuristics, Mgmt Sci., 36: 674–688.Google Scholar
  15. 15.
    Naft, J., Neuropt: Neurocomputing for multiobjective design optimization for printed circuit board component, Proc., Joint Conf. Neural Networks, 1989, 503–506.Google Scholar
  16. 16.
    Xu, J., Bao, Z., Neural networks and graph theory, Science in China, Ser. E, 2001, 31(6): 533–555.Google Scholar
  17. 17.
    Adleman, L. M., Molecular computation of solutions to combinatorial problems, Science, 1994, 266(11): 1021–1023.CrossRefGoogle Scholar
  18. 18.
    Lipton, R. J., DNA solution of hard computational problems, Science, 1995, 268(28): 542–545.CrossRefGoogle Scholar
  19. 19.
    Cukras, A. R., Faulhammer, D., Lipton, R. J. et al., Chess games: A model for RNA-based computation, Biosystems, 1999, 52; 35–45.CrossRefGoogle Scholar
  20. 20.
    Sakamoto, K., Gouzu, H., Komiya, K. et al., Molecular computation by DNA hairpin formation, Science, 2000, 288: 1223–1226.CrossRefGoogle Scholar
  21. 21.
    Liu, Q. H., Wang, L. M., Frutos, A. G. et al., DNA computing on surfaces, Nature, 2000, 403: 175–179.CrossRefGoogle Scholar
  22. 22.
    Faulhammer, D., Cukras, A. R., Lipton, R. J. et al., Molecular computation: RNA solutions to chess problems, Biochemistry, 2000, 97(4): 1385–1389.Google Scholar
  23. 23.
    Yin, Z. X., Zhang, F. Y., Xu, J., DNA computing based on molecular beacons, J. of Biomathematics, 2003, 18(4): 1–5.Google Scholar
  24. 24.
    Xu, J., Self-Complementary Graph Theory with Applications (in Chinese), Xi’an: Xidian University publishing company, 1999.Google Scholar
  25. 25.
    Hwang, F. K., Richards, D. S., Winter, P., The Steiner Tree Problem, New York: Elsevier Science Publishers B.V. Press, 1992.Google Scholar
  26. 26.
    Xu, J., Zhang, J. Y., Bao, Z., Algorithm for the isomorphism of graphs based on hopfield networks, Journal of Electronics (Supplement), 1996, 116–121.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Institute of Molecule Computing, Department of Control Science and EngineeringHuazhong UniversityWuhanChina
  2. 2.College of Mathematics and InformationShanxi Normal UniversityXi’anChina
  3. 3.Mode Advanced Design Technology CentreDalian UniversityDalianChina

Personalised recommendations